ORIGINAL ARTICLE
Ahead of Print

A new TEX11 mutation causes azoospermia and testicular meiotic arrest


1 Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
2 Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
3 Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
4 Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
5 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China

Correspondence Address:
Hao-Bo Zhang,
Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012; Shandong Key Laboratory of Reproductive Medicine, Jinan 250012; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012
China
Hong-Bin Liu,
Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012; Shandong Key Laboratory of Reproductive Medicine, Jinan 250012; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/aja.aja_8_21

PMID: 33762476

There are many unknown genetic factors that lead to infertility in nonobstructive azoospermia men. Here, we performed whole-exome sequencing in blood samples obtained from 40 azoospermia patients with meiotic arrest and found a novel c.151_154del (p.D51fs) frame-shift mutation in exon 3 of the testis expressed 11 (TEX11) gene in one patient. Sanger sequencing analysis of the patient and 288 fertile men was performed to validate the mutation. Immunohistochemical analysis showed TEX11 expression in late-pachytene spermatocytes and in round spermatids in fertile human testes. In contrast, testes of the patient with TEX11 mutation underwent meiotic arrest and lacked TEX11 expression. Western blotting of human embryonic kidney (HEK293) cells transfected with a vector for the p.D51fs TEX11 variant detected no TEX11 expression. In conclusion, we identified a novel frame-shift mutation in the TEX11 gene in an azoospermia patient, emphasizing that this gene should be included in genetic screening panels for the clinical evaluation of azoospermia patients.


[FULL TEXT] [PDF]
Print this article
Search
 Back
 
  Search Pubmed for
 
    -  Yu XC
    -  Li MJ
    -  Cai FF
    -  Yang SJ
    -  Liu HB
    -  Zhang HB
 Citation Manager
 Article Access Statistics
 Reader Comments
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed822    
    PDF Downloaded52    

Recommend this journal