ORIGINAL ARTICLE
Year : 2021  |  Volume : 23  |  Issue : 2  |  Page : 197-204

A novel homozygous frameshift mutation in MNS1 associated with severe oligoasthenoteratozoospermia in humans


1 Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China
2 Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
3 Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China

Correspondence Address:
Hong-Chuan Nie
Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China

Yue-Qiu Tan
Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410078, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aja.aja_56_20

Rights and Permissions

Oligoasthenoteratozoospermia (OAT) refers to the combination of various sperm abnormalities, including a decreased sperm count, reduced motility, and abnormal sperm morphology. Only a few genetic causes have been shown to be associated with OAT. Herein, we identified a novel homozygous frameshift mutation in meiosis-specific nuclear structural 1 (MNS1; NM_018365: c.603_604insG: p.Lys202Glufs*6) by whole-exome sequencing in an OAT proband from a consanguineous Chinese family. Subsequent variant screening identified four additional heterozygous MNS1 variants in 6/219 infertile individuals with oligoasthenospermia, but no MNS1 variants were observed among 223 fertile controls. Immunostaining analysis showed MNS1 to be normally located in the whole-sperm flagella, but was absent in the proband's sperm. Expression analysis by Western blot also confirmed that MNS1 was absent in the proband's sperm. Abnormal flagellum morphology and ultrastructural disturbances in outer doublet microtubules were observed in the proband's sperm. A total of three intracytoplasmic sperm injection cycles were carried out for the proband's wife, but they all failed to lead to a successful pregnancy. Overall, this is the first study to report a loss-of-function mutation in MNS1 causing OAT in a Han Chinese patient.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1120    
    Printed84    
    Emailed0    
    PDF Downloaded121    
    Comments [Add]    

Recommend this journal