Year : 2021  |  Volume : 23  |  Issue : 1  |  Page : 30-35

Kinematic analysis of penile reflexes in a rat model of spinal cord injury

1 Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
2 Kentucky Spinal Cord Injury Research Center, Louisville, KY 40202, USA

Correspondence Address:
Charles H Hubscher
Department of Anatomical Sciences and Neurobiology, University of Louisville; Kentucky Spinal Cord Injury Research Center, Louisville, KY 40202
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/aja.aja_1_20

Rights and Permissions

The ex-copula penile dorsiflexion reflex (PDFR) is an established measure of sexual dysfunction in male rat models of spinal cord injury. Although the PDFR after complete spinal transection is well described, information regarding the more clinically relevant incomplete spinal contusion injury model is limited. This study examined, using two-dimensional (2D) kinematic analysis, the relationship between the PDFR and degree of white matter sparing (WMS). Male Wistar rats received a T9 contusion with varying degrees of impactor forces. Weekly kinematic recordings of the PDFR were made 3–8 weeks postinjury. Sexual reflex components examined included maximum angle of penile dorsiflexion, total penile event duration, and penile ascent speed. Post hoc comparison between animals grouped based upon injury severity (moderate–severe: 13.33%–17.15% WMS vs moderate: 20.85%–33.50% WMS) indicated PDFR effects. Specifically, the numbers of animals with more moderate contusions having data points above the median in both maximum angle of penile dorsiflexion and penile ascent speed were significantly lower than animals with more severe injuries. Total penile event duration was also affected but only at more chronic time points (6–8 weeks). Thus, 2D kinematic analysis of the PDFR allows for more consistent and quantifiable analysis of the subtle differences that can occur between injury severity groups in the rat contusion model.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded129    
    Comments [Add]    

Recommend this journal