Table of Contents  
Year : 2020  |  Volume : 22  |  Issue : 2  |  Page : 200-207

Prevalence and clinical application of TMPRSS2-ERG fusion in Asian prostate cancer patients: a large-sample study in Chinese people and a systematic review

1 Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
2 Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China

Date of Submission16-Oct-2018
Date of Acceptance27-Mar-2019
Date of Web Publication14-Jun-2019

Correspondence Address:
Xu Gao
Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433
Ying-Hao Sun
Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/aja.aja_45_19

Rights and Permissions

Fusion between the transmembrane protease serine 2 and v-ets erythroblastosis virus E26 oncogene homolog (TMPRSS2-ERG fusion) is a common genetic alteration in prostate cancer among Western populations and has been suggested as playing a role in tumorigenesis and progression of prostate cancer. However, the prevalence of TMPRSS2-ERG fusion differs among different ethnic groups, and contradictory results have been reported in Asian patients. We aim to evaluate the prevalence and significance of TMPRSS2-ERG fusion as a molecular subtyping and prognosis indicator of prostate cancer in Asians. We identified the fusion status in 669 samples from prostate biopsy and radical prostatectomy by fluorescence in situ hybridization and/or immunohistochemistry in China. We examined the association of TMPRSS2-ERG fusion with clinicopathological characteristics and biochemical recurrence by Chi-square test and Kaplan–Meier analysis. Finally, a systematic review was performed to investigate the positive rate of the fusion in Asian prostate cancer patients. McNemar's test was employed to compare the positive rates of TMPRSS2-ERG fusion detected using different methods. The positive rates of TMPRSS2-ERG fusion were 16% in our samples and 27% in Asian patients. In our samples, 9.4% and 19.3% of cases were recognized as fusion positive by fluorescence in situ hybridization and immunohistochemistry, respectively. No significant association between the fusion and clinical parameters was observed. TMPRSS2-ERG fusion is not a frequent genomic alteration among Asian prostate cancer patients and has limited significance in clinical practices in China. Besides ethnic difference, detection methods potentially influence the results showing a positive rate of TMPRSS2-ERG fusion.

Keywords: Asian; Chinese; prostate cancer; systematic review; TMPRSS2-ERG

How to cite this article:
Kong DP, Chen R, Zhang CL, Zhang W, Xiao GA, Wang FB, Ta N, Gao X, Sun YH. Prevalence and clinical application of TMPRSS2-ERG fusion in Asian prostate cancer patients: a large-sample study in Chinese people and a systematic review. Asian J Androl 2020;22:200-7

How to cite this URL:
Kong DP, Chen R, Zhang CL, Zhang W, Xiao GA, Wang FB, Ta N, Gao X, Sun YH. Prevalence and clinical application of TMPRSS2-ERG fusion in Asian prostate cancer patients: a large-sample study in Chinese people and a systematic review. Asian J Androl [serial online] 2020 [cited 2021 Aug 5];22:200-7. Available from: - DOI: 10.4103/aja.aja_45_19

De-Pei Kong, Rui Chen
These authors contributed equally to the work.

  Introduction Top

In the United States, it was estimated that more than 29 000 men would die of prostate cancer (PCa) in 2018.[1] The high incidence and cancer-related death rate of PCa make the disease a serious threat for Western men's health.[2] However, Asians are several times less likely to develop PCa, although PCa morbidity and mortality have been increasing in Asian countries in the last decades.[3],[4] These differences may be caused by different lifestyles, environments, medical conditions, and, most importantly, genomic pathogenesis.[5]

Overexpression of v-ets erythroblastosis virus E26 oncogene homolog(ERG) mRNA in PCa was first reported by Petrovics and his colleagues in 2005,[6] following which Tomlins and colleagues[7] discovered the mechanism of ERG activation to be the fusion between transmembrane protease serine 2 (TMPRSS2) and ERG. ERG expression was promoted by androgen through TMPRSS2, which finally resulted in the overexpression of proto-oncoprotein ERG.[8],[9],[10] During this period, numerous studies demonstrated that aberrantly expressed ERG combined with phosphatase and tensin homolog (PTEN) loss or other molecular alterations promoted the oncogenesis and metastasis of PCa both in vitro and in vivo.[11],[12],[13],[14],[15],[16] Moreover, according to data from The Cancer Genome  Atlas More Details (TCGA), TMPRSS2-ERG fusion is one of the predominant molecular classification factors and promising prognostic markers for localized PCa. TMPRSS2-ERG fusion combined with PCA3 was used in the clinical setting by Tomlins et al.[17] to save patients with elevated prostate-specific antigen (PSA) levels referred for biopsy, which potentially decreased the side effects of biopsy and the anxiety associated with waiting for the diagnosis.

However, a series of studies have demonstrated that TMPRSS2-ERG fusion has a strong correlation with ethnicity, and the positive rates of TMPRSS2-ERG fusion differ among different ethnic and geographical groups, at a wide range of 7%–83%.[18],[19],[20] Although more than half of PCa patients in North America and Europe harbor the TMPRSS2-ERG fusion,[21],[22] it is still controversial whether it is a common gene fusion type in Asian patients.[18],[23] A rising number of studies have focused on expounding the interaction of TMPRSS2-ERG fusion and PCa in Asia, and with conflicting results. In 2010, Sun and colleagues[24] examined TMPRSS2-ERG fusion in 50 Chinese PCa samples by fluorescence in situ hybridization (FISH) and found 39 (78.0%) positive cases. However, another Chinese researcher found that TMPRSS2-ERG fusion was detected by the same method in only 7 (7.5%) of 93 Chinese patients.[25]

There is evidence that unstandardized detection methods, including FISH, immunohistochemistry (IHC), polymerase chain reaction (PCR), and some other high-throughput methods, may produce different results in detecting TMPRSS2-ERG fusion.[23],[26] The disparities in the positive rates of TMPRSS2-ERG raise the question of whether there is equal applicability of this genomic alteration in Asian patients.

In the present study, we aimed to evaluate the positive rate of TMPRSS2-ERG fusion in Asian patients by experiment and a systematic review and to assess its clinical significance as a cancer biomarker in Chinese people. We also made efforts to investigate the factors which could influence the measured positive rate of TMPRSS2-ERG fusion.

  Patients and Methods Top

Patients and prostate specimens

Paraffin-embedded tissue blocks of 729 consecutive PCa patients who underwent radical prostatectomy or prostate biopsy in Shanghai Changhai Hospital (Shanghai, China), between January 2010 and July 2018, were retrieved from the Hospital's Department of Pathology. Two independent pathologists reviewed corresponding hematoxylin and eosin (H&E)-stained slides of each block (6–15 blocks per patient) to confirm pathological diagnosis, and 669 eligible blocks were selected. For each patient receiving biopsy in the hospital, 12 cores were obtained and the core with the greatest tumor volume was chosen for the experiment. Age at diagnosis, body mass index (BMI), preoperative PSA, Gleason pattern, emission computed tomography (ECT) diagnosis, clinical tumor stage, and perineural and lymphovascular invasion status were retrieved from medical records, and patients' follow-up was conducted in accordance with the Chinese Guidelines for the Diagnosis and Treatment of Urological Diseases.[27] Biochemical recurrence (BCR)-free survival is defined by a PSA level ≥0.2 ng ml−1 in two successive follow-ups after surgery. Informed consent was obtained from the patients before surgery, and all procedures performed in this study involving human participants were approved by the Institutional Review Board of Shanghai Changhai Hospital.

Fluorescence in situ hybridization and immunohistochemistry

We detected DNA fusion by ERG break-apart FISH assay, which was demonstrated to be a reliable technique to detect the fusion between two neighboring genes.[10],[28] Bacterial artificial chromosome (BAC) clones and FISH assay kits (F01015) were obtained from GP Medical Technologies (Beijing, China). Fluorescein (green)-labeled RP11-24A11 and tetramethylrhodamine (red)-labeled RP11137J13 were provided in the FISH assay kit, which spanned the centromeric and telomeric regions of the ERG, respectively. The experiment was performed following the manufacturer's instructions. Briefly, 4-μm sections were deparaffinized and dehydrated followed by Proteinase K digestion (provided in the FISH assay kit). After washing and fixation, the sections were dehydrated and dried. Denaturation was under 85°C for 10 min and hybridization was under 42°C overnight.

Fluorescent images were captured by a ×100 oil lens (Olympus BX51, Tokyo, Japan). A normal cell exhibits a pair of orange signals in nucleus while cells with gene fusion show separated red and green coloring or lack one of these colors. For each case, we counted at least 100 nuclei, and fusion was recorded when there were more than 10% of nuclei exhibited abnormal signals.


IHC analysis of ERG expression was performed on 4-μm sections using an UltraSensitive TMS-P kit (KIT-9710, MaiXin Biotechnology, Fujian, China). The tissue sections were dewaxed, followed by gradual dehydration. Then, heat-induced antigen retrieval was processed in 0.01 mol l−1 citrate buffer in a microwave for 15 min. Primary antibody incubation for ERG (1/200, ab92513, Abcam, Cambridge, UK) was conducted at 4°C overnight and secondary antibody was included in the kit. DAB staining was performed with a DAB staining kit (DAB-2031, MaiXin Biotechnology) as per the manufacturer's instructions. Slides were scanned using a Nano Zoomer S60 (Hamamatsu Photonics, Iwata City, Japan), and ERG expression status was recorded as negative (no staining or stained area <10%) or positive (weak or strong staining).

Statistical analyses

A Chi-square test was employed for comparing the association between the fusion status and clinical characteristics. BCR-free survival rate was calculated using Kaplan–Meier analysis and a log-rank test. McNemar's test was used to compare the difference between positive rates of gene fusion evaluated by FISH and IHC. Statistical analysis were analyzed using SPSS (IBM SPSS Statistics for Windows, version 19.0, IBM Corp., Armonk, NY, USA), and graphs were drawn using GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA, USA). Statistics were considered statistically significant when two-sided P < 0.05.

Publication search

The systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Literature was searched for in the PubMed and Embase databases on December 20, 2017, with no restrictions on publication year. The following search terms were used: “TMPRSS2,” “ERG” OR “ETS related gene,” AND “Prostate cancer,” and both the adjective and noun forms of the name of each Asian country or region. Only abstracts or articles in English were included. Two authors (RC and DPK) independently reviewed the articles, and fusion-related information was extracted.


Heterogeneity among studies was measured using the Cochrane Q statistic (P > 0.05 for homogeneity) and the I[2] statistic. I[2] is calculated using the formula: I[2] = (Q − df)/Q, in which df means degree of freedom. I[2] < 40% was considered to be that no important heterogeneity existed and I[2] > 75% was considered to be that heterogeneity existed.[29] The fixed effects model and random effects meta-analysis were applied as being relevant. All statistical analyses for the meta-analysis were performed using R version 3.4.3 (R Foundation for Statistical Computing, Vienna, Austria) with the Meta libraries.

  Results Top

TMPRSS2-ERG fusion and its clinical association

[Table 1] summarizes the clinicopathological characteristics of patients included in the study. In the study, the mean follow-up time of patients was 26.6 (range: 0–96.0) months, and the median was 22.0 months. A total of 669 patients with 179 biopsy samples and 490 prostatectomy samples were evaluated. The mean age of all patients was 67.8 (range: 43–88) years, and biochemical recurrence was observed in 7.5% (22/333) patients during follow-up. Among the 669 samples, 110 (16.4%) showed the TMPRSS2-ERG fusion. Samples from prostatectomy had a higher fusion rate than those from biopsy tissue (17.8% vs 12.9%) though the data were not statistically significant. Similarly, patients with higher BMI seemed more likely to harbor TMPRSS2-ERG fusion. However, a Chi-square test suggested that none of the investigated clinicopathological characteristics were associated with TMPRSS2-ERG fusion. [Table 2] shows related details. In addition, Kaplan–Meier survival analysis showed no difference in BCR rates between the fusion-positive and fusion-negative groups [Figure 1].
Table 1: Clinicopathological characteristics of 669 investigated patients

Click here to view
Table 2: Association of transmembrane protease serine 2 and v-ets erythroblastosis virus E26 oncogene homolog fusion status with clinical parameters among 669 prostate cancer samples

Click here to view
Figure 1: BCR-free survival rates of 490 patients receiving radical prostatectomy. Kaplan–Meier analysis was performed and no significant difference was observed in BCR-free survival rates between the fusion-positive and fusion-negative groups (log-rank P = 0.91). BCR: biochemical recurrence.

Click here to view

TMPRSS2-ERG fusion rates by different detection methods

Samples were randomly assigned into subgroups, in which they were detected by different methods. We evaluated 73 biopsy samples and 194 prostatectomy samples by FISH, and 84 biopsy samples and 196 prostatectomy samples by IHC. In addition, 22 biopsy samples and 100 prostatectomy samples were simultaneously assessed by FISH and IHC. TMPRSS2-ERG fusion was considered positive as long as either of FISH and IHC, or both, detected fusion signals. [Supplementary Table 1 [Additional file 1]] and [Supplementary Table 2 [Additional file 2]] show the number of different sample types and positive rates of samples evaluated by FISH, IHC, or both. Of the 267 samples detected by FISH, 25 (9.4%) were identified as fusion positive while 54/280 (19.3%) fusion was found by IHC. It was surprising that samples were more likely to be defined as fusion positive by IHC than by FISH (P < 0.001). There were 17 cases recognized as fusion positive by IHC and contradictorily negative by FISH. However, no case detecting positive signals by FISH was recognized as fusion negative by IHC. [Figure 2] shows representative images of FISH and IHC.
Figure 2:H&E stains, IHC, and FISH images of three cases showing different fusion status. Small boxes indicate areas shown at higher magnification in the larger box. (a) H&E stain of a fusion-negative case of prostate cancer with cribriform glands (Gleason grade 4). (b) IHC shows positive signals in some of the blood vessel endothelium, but no ERG expression in cancerous prostate glands. (c) In FISH images, there was no separation of red and green signals. (d) H&E stain of a case recognized as fusion positive by IHC, but negative by FISH. (e) Strong signals of ERG expression can be seen in the IHC image, but (f) almost all the cells exhibit normal signals in the FISH image. (g) H&E stain of one case of prostate cancer (Gleason grade 3) evaluated as fusion positive by IHC and FISH. (h) IHC shows ERG expression in cancerous prostate glands. (i) In large portion of cell nuclei, one yellow, one red (red arrows), and one green signal (red arrows) indicate TMPRSS2-ERG fusion through translocation. Scale bars = 100 μm in a, b, d, e, g and h; 30 μm in up-right image of b, e and h; 20 μm in c, f, and i; 7.5 μm in up-right image of c, f, and i. H&E: hematoxylin and eosin; IHC: immunohistochemistry; FISH: fluorescence in situ hybridization; TMPRSS2: transmembrane protease serine 2; ERG: v-ets erythroblastosis virus E26 oncogene homolog.

Click here to view

Literature search and study selection

Using the search strategy described above, we identified a list of 184 and 295 studies from PubMed and Embase, respectively. Abstracts of 243 studies were carefully reviewed and studies carried out by Asian authors but investigating non-Asian populations, or studies with experiments performed only in PCa cell lines, were excluded. The abstracts and full articles of the remaining studies were then screened. Consequently, 45 studies with 5371 cases were included in the meta-analysis. [Figure 3] shows a flowchart of the literature research.
Figure 3:Flowchart of literature screening with inclusion and exclusion criteria.

Click here to view

Overall pooled results of TMPRSS2-ERG fusion in Asian patients

The pooled results indicated that the positive rate of TMPRSS2-ERG fusion was 27% (95% confidence interval [CI]: 24%–32%) in all included studies. Among the 49 selected records, 18 reported a positive rate of 20% or lower and 17 reported a positive rate of 30% or higher. The highest positive rate (78%) was observed in the study by Sun et al.[24] and the lowest detection rate (0) was observed in the study by Furusato et al.[30] [Figure 4] shows a forest plot for the 45 studies.
Figure 4: Forest plot of positive rate of TMPRSS2-ERG fusion for 45 included studies. A random effects model is used and the positive rate of TMPRSS2-ERG fusion in Asian PCa patients is 27%. Data were individually analyzed when two or more groups were included in one research and we present these subgroups as (1), (2), (3). CI: confidence interval; TMPRSS2-ERG: transmembrane protease serine 2 and v-ets erythroblastosis virus E26 oncogene homolog; PCa: prostate cancer.

Click here to view

Positive rate of TMPRSS2-ERG fusion by subgroup analysis

Studies were divided into groups to compare the differences between different populations, sample types, detection methods, and study sample size. Most studies were from China (n = 17), South Korea (n = 11), or Japan (n = 8), and patients from these three countries accounted for 86.8% of all patients. The positive rate of TMPRSS2-ERG fusion in the Japanese population was 21% (95% CI: 17%–25%), which was relatively lower than 25% (95% CI: 17%–34%) in Chinese and 26% (95% CI: 20%–32%) in South Koreans. However, Indian and Turkish populations were reported to have higher fusion rates (52% and 46%, respectively). After excluded Aryan and Caucasian population, the positive rate of the fusion in Asians was 24% (95% CI: 20%–29%). [Supplementary Table 3 [Additional file 3]] lists the prevalence of the fusion in different countries examined. It is noteworthy that fusion detected in samples from prostate biopsy (34%; 95% CI: 24%–47%) was higher than that in samples from radical prostatectomy (24%; 95% CI: 20%–29%). Samples assessed by PCR showed higher fusion rate (40%; 95% CI: 26%–55%) than samples assessed by IHC (26%; 95% CI: 22%–31%) and FISH (25%; 95% CI: 18%–35%).

The positive rates of fusion in the smaller sample-sized (n ≤ 30) group and larger sample-sized (n > 30) group was 33% (95% CI: 17%–56%) and 27% (95% CI: 23%–31%), respectively. This implied that a sampling error in some studies may have caused higher prevalence of the fusion.

  Discussion Top

Gene fusions have been recognized as frequent events in diseases including cancer since Peter Nowell and David Hungerford reported BCR-ABL1 fusion in chronic myeloid leukemia (MCL) in the 1960s.[31],[32] In PCa, TMPRSS2-ERG fusion is one of the most well-known genomic alterations and a large number of studies have been carried out to investigate the function and application of this fusion as an oncogenic factor and a diagnostic or prognostic biomarker.[33],[34] Nevertheless, these reports were mostly in the Western populations, and the value of TMPRSS2-ERG fusion in Asian patients is quite unclear.

Several studies have reported that Eastern Asian patients are two to five times less likely to harbor the fusion.[35],[36],[37],[38] We confirm that 110 (16.4%) of the 669 Chinese PCa patients harbor TMPRSS2-ERG fusion, which coincides with our previous report that ERG protein was overexpressed in 14.9% (26/174) of cases in tissue arrays in our hospital.[39] Furthermore, the meta-analysis indicates that 27% (95% CI: 23%–31%) of Asian patients are fusion positive, which is approximately half the rate in the Western populations and is consistent with previous multiracial studies.[10],[19],[40] Exceptions were Indian (Aryan descent) and Turkish (Caucasian descent), of which the fusion rates were 52% (95% CI: 43%–60%) and 46%, respectively, in our meta-analysis. Rawal et al.[41] conducted the first investigation into the positivity of TMPRSS2-ERG fusion in an Indian population in 30 evaluable samples, of which they found 8 (27%) fusion-positive cases. They concluded that the positivity of TMPRSS2-ERG fusion in Indian patients was relatively lower, though this was not supported by other following studies. One year later, Jain et al.[42] reported a fusion positive rate of 64% in Indian patients. In 2015, Suryavanshi et al.[43] and Ateeq et al.[44] detected the fusion in 51 of 100 and 46 of 94 samples, respectively. However, this was strong evidence of racial difference in TMPRSS2-ERG fusion.

The clinical utility of TMPRSS2-ERG fusion as a diagnostic and prognostic biomarker of PCa remained under debate both in the Western and Eastern populations. TMPRSS2-ERG fusion has been demonstrated as associated with PSA level, Gleason grade, tumor stage, metastasis, and BCR or tumor-specific death in some studies.[10],[23],[45],[46],[47] In a multicenter study involving 1312 patients, Tomlins and colleagues[17] put forward that urine TMPRSS2-ERG fusion was associated with tumor size, high Gleason score, and upgrading of Gleason score at prostatectomy. However, two prospective studies from Smith and colleagues demonstrated that TMPRSS2-ERG fusion in prostatic secretion could predict neither early BCR among patients receiving prostatectomy[48] nor Gleason upstaging among patients receiving active surveillance[49] in the US population. It was also observed in Asia that no consensus on the clinical significance of TMPRSS2-ERG fusion was reached. Kim and colleagues reported better BCR-free survival rates among fusion-positive patients[50] while Lee found the fusion in Korean patients had no relation with BCR but strong correlation with lower Gleason grade.[38] In our study, no significant association between TMPRSS2-ERG fusion and clinical parameters mentioned above was confirmed.

We observed that the positive rate of TMPRSS2-ERG fusion was lower in biopsies (12.9%) than in prostatectomy specimens (17.8%) in our hospital, but with no statistical significance (P = 0.13). This result is supported by Mosquera and other researchers who found that specimens from radical prostatectomy and biopsy had the equal positive rate of TMPRSS2-ERG fusion.[10],[21],[51] Controversially, our meta-analysis reported a higher positive rate in biopsy specimens (35%) than in radical prostatectomy specimens (24%). One reason may be the disparity of the sample distribution; Indian patients accounted for a larger proportion in the biopsy group (26%) than in the prostatectomy group (2%).

We compared FISH with IHC in detecting TMPRSS2-ERG fusion in our samples and found that IHC produced a higher positive rate. In other studies, researchers found that TMPRSS2-ERG fusion was detected in 30% of patients by FISH in the UK[46] and the US,[52] while van Leenders et al.[53] reported that the positive rate of the fusion among US patients was 61% using a specific antibody for fusion generated ERG. Cross-reactivity of antibodies may be responsible for the higher sensitivity, and compared with FISH, which provides direct evidence of gene fusion, IHC is more likely to produce false-positive results. Thus, the actual positive rate of the fusion could be lower than we detected. In our meta-analysis, PCR detected a higher positive rate of fusion than FISH or IHC. However, Hagen and other researchers found that RT-PCR was as reliable as FISH in detecting the fusion.[26]

To the best of our knowledge, this study has the largest sample size in Asia reporting the TMPRSS2-ERG fusion rate. In addition, a positive rate of fusion was calculated from the latest studies by a meta-analysis among Asian population. However, several limitations should be taken into account in this study. It was a single-center study and most patients were from Eastern China; the long-term prognostic value of TMPRSS2-ERG fusion in our study needs to be updated in follow-up work. The antibody used in the IHC detects both ETS transcription factor ERG (EGR) and Fli-1 proto-oncogene (FLI-1), resulting in the increase of false-positive cases. However, Paulo and colleagues found that FLI-1 protein was expressed in only 1 of 200 PCa patients, indicating that FLI-1 could contribute a limited false-positive rate in detecting ERG by IHC in PCa samples.[54]

  Conclusion Top

The positive rate of TMPRSS2-ERG fusion is much lower in PCa among a Chinese population, and this gene aberration does not correlate with PSA level, Gleason grade, clinical tumor stage, bone metastasis, perineural invasion, lymphovascular invasion, or BCR of patients in the present study. The systematic review confirmed that the positive rate of TMPRSS2-ERG fusion is much lower in Asian PCa patients. Based on our data, we believe that some of the results from Asian studies have been possibly affected by their detection methods and sample size. We assert that TMPRSS2-ERG fusion may be less effective as a diagnostic and prognostic biomarker in Asians because of its low prevalence and insignificant correlation with clinical parameters. Furthermore, it appears important and urgent to find suitable molecular and genomic biomarkers in Asian PCa patients.[84]

  Author Contributions Top

XG and YHS contributed to conceptualization and project administration. DPK and GAX performed data curation. WZ and FBW were in charge of formal analysis. RC and YHS contributed to funding acquisition. DPK contributed to investigation and visualization. DPK, CLZ, and NT contributed to methodology. YHS collected the resources. DPK and RC contributed to software, validation and writing the original draft. DPK, RC, and CLZ wrote, reviewed, and edited the manuscript. All authors read and approved the final manuscript.

  Competing Interests Top

All authors declared no competing interests.

  Acknowledgments Top

This research was funded by the National Nature Science Foundation Youth Project (Grant No. 81702514), the National Natural Science Foundation of China (Grant No. 81430058), and the Clinical Research Project of Shanghai Municipal Commission of Health and Family Planning (Grant No. 20184Y0130).

Supplementary Information is linked to the online version of the paper on the Asian Journal of Andrology website.

  References Top

Siegel R, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68: 7–30.  Back to cited text no. 1
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.  Back to cited text no. 2
Chen R, Ren S, Yiu MK, Fai NC, Cheng WS, et al. Prostate cancer in Asia: a collaborative report. Asian J Urol 2014; 1: 15–29.  Back to cited text no. 3
Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol 2012; 61: 1079–92.  Back to cited text no. 4
Attard G. Prostate cancer. Lancet 2016; 387: 70–82.  Back to cited text no. 5
Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005; 24: 3847–52.  Back to cited text no. 6
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–8.  Back to cited text no. 7
Furusato B, Tan SH, Young D, Dobi A, Sun C, et al. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 2010; 13: 228–37.  Back to cited text no. 8
Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 2010; 12: 590–8.  Back to cited text no. 9
Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 2006; 66: 8337–41.  Back to cited text no. 10
Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci U S A 2008; 105: 2105–10.  Back to cited text no. 11
Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008; 10: 177–9.  Back to cited text no. 12
Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 2008; 27: 5348–53.  Back to cited text no. 13
King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 2009; 41: 524–6.  Back to cited text no. 14
Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009; 41: 619–24.  Back to cited text no. 15
Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA, et al. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci U S A 2009; 106: 12465–70.  Back to cited text no. 16
Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 2011; 3: 94ra72.  Back to cited text no. 17
Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, et al. The TMPRSS2:ERG rearrangement, erg expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev 2012; 21: 1497–509.  Back to cited text no. 18
Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 2011; 71: 489–97.  Back to cited text no. 19
Sedarsky J, Degon M, Srivastava S, Dobi A. Ethnicity and ERG frequency in prostate cancer. Nat Rev Urol 2017; 15: 125–31.  Back to cited text no. 20
Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, et al. Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res 2009; 15: 4706–11.  Back to cited text no. 21
Rubin MA. ETS rearrangements in prostate cancer. Asian J Androl 2012; 14: 393–9.  Back to cited text no. 22
Zhou CK, Young D, Yeboah ED, Coburn SB, Tettey Y, et al. TMPRSS2:ERG gene fusions in prostate cancer of west African men and a meta-analysis of racial differences. Am J Epidemiol 2017; 186: 1352–61.  Back to cited text no. 23
Sun QP, Li LY, Chen Z, Pang J, Yang WJ, et al. Detection of TMPRSS2-ETS fusions by a multiprobe fluorescence in situ hybridization assay for the early diagnosis of prostate cancer: a pilot study. J Mol Diagn 2010; 12: 718–24.  Back to cited text no. 24
Mao X, Yu Y, Boyd LK, Ren G, Lin D, et al. Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis. Cancer Res 2010; 70: 5207–12.  Back to cited text no. 25
Hagen RM, Adamo P, Karamat S, Oxley J, Aning JJ, et al. Quantitative analysis of ERG expression and its splice isoforms in formalin-fixed, paraffin-embedded prostate cancer samples. Am J Clin Pathol 2014; 142: 533–40.  Back to cited text no. 26
Na YQ, Ye ZQ, Sun YH, Sun G. Chinese Guidelines for the Diagnosis and Treatment of Urological Diseases. Beijing: People's Medical Publishing House; 2014. p78.  Back to cited text no. 27
Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 2007; 31: 882–8.  Back to cited text no. 28
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.  Back to cited text no. 29
Furusato B, Takahashi H, Okayasu M, Kido M, Kimura T, et al. Assessment of ERG expression in latent prostate cancer. Abstract. In: Laboratory Investigation. New York: Nature Publishing Group; 2013. p211A–12A.  Back to cited text no. 30
Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007; 7: 233–45.  Back to cited text no. 31
Schram AM, Chang MT, Jonsson P, Drilon A. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol 2017; 14: 735–48.  Back to cited text no. 32
Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008; 8: 497–511.  Back to cited text no. 33
Loeb S, Bruinsma SM, Nicholson J, Briganti A, Pickles T, et al. Active surveillance for prostate cancer: a systematic review of clinicopathologic variables and biomarkers for risk stratification. Eur Urol 2015; 67: 619–26.  Back to cited text no. 34
Ren S, Wei GH, Liu D, Wang L, Hou Y, et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol 2017. Doi: 10.1016/j.eururo.2017.08.027. [Epub ahead of print].  Back to cited text no. 35
Xue L, Mao X, Ren G, Stankiewicz E, Kudahetti SC, et al. Chinese and Western prostate cancers show alternate pathogenetic pathways in association with ERG status. Am J Cancer Res 2012; 2: 736–44.  Back to cited text no. 36
Miyagi Y, Sasaki T, Fujinami K, Sano J, Senga Y, et al. ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples. Mod Pathol 2010; 23: 1492–8.  Back to cited text no. 37
Lee K, Chae JY, Kwak C, Ku JH, Moon KC. TMPRSS2-ERG gene fusion and clinicopathologic characteristics of Korean prostate cancer patients. Urology 2010; 76: 1267–8.  Back to cited text no. 38
Jiang H, Mao X, Huang X, Zhao J, Wang L, et al. TMPRSS2:ERG fusion gene occurs less frequently in Chinese patients with prostate cancer. Tumour Biol 2016; 37: 12397–402.  Back to cited text no. 39
Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 2009; 56: 275–86.  Back to cited text no. 40
Rawal S, Young D, Williams M, Colombo M, Krishnappa R, et al. Low frequency of the ERG oncogene alterations in prostate cancer patients from India. J Cancer 2013; 4: 468–72.  Back to cited text no. 41
Jain S, Bansal A, Kumar A, Saxena S. Clinical Relevance of TMPRSS2-ERG fusion marker for prostate cancer. FEBS J 2014; 281: 446.  Back to cited text no. 42
Suryavanshi M, Mehta A, Jaipuria J, Sharma AK, Rawal S, et al. Weaker ERG expression in patients with ERG-positive prostate cancer is associated with advanced disease and weaker androgen receptor expression: an Indian outlook. Urol Oncol 2015; 33: 331–9.  Back to cited text no. 43
Ateeq B, Kunju LP, Carskadon SL, Pandey SK, Singh G, et al. Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from Northern India. Prostate 2015; 75: 1051–62.  Back to cited text no. 44
Kulda V, Topolcan O, Kucera R, Kripnerova M, Srbecka K, et al. Prognostic significance of TMPRSS2-ERG fusion gene in prostate cancer. Anticancer Res 2016; 36: 4787–94.  Back to cited text no. 45
Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 2008; 27: 253–63.  Back to cited text no. 46
Leyten GH, Hessels D, Jannink SA, Smit FP, de Jong H, et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 2014; 65: 534–42.  Back to cited text no. 47
Jeske DR, Linehan JA, Wilson TG, Kawachi MH, Wittig K, et al. Two-stage classifiers that minimize PCA3 and the PSA proteolytic activity testing in the prediction of prostate cancer recurrence after radical prostatectomy. Can J Urol 2017; 24: 9089–97.  Back to cited text no. 48
Wittig K, Yamzon JL, Smith DD, Jeske DR, Smith SS. Presurgical biomarker performance in the detection of gleason upgrading in prostate cancer. Cancer Epidemiol Biomarkers Prev 2016; 25: 1643–5.  Back to cited text no. 49
Kim SH, Joung JY, Lee GK, Hong EK, Kang KM, et al. Overexpression of ERG and wild-type PTEN are associated with favorable clinical prognosis and low biochemical recurrence in prostate cancer. PLoS One 2015; 10: e122498.  Back to cited text no. 50
Mehra R, Tomlins SA, Shen R, Nadeem O, Wang L, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol 2007; 20: 538–44.  Back to cited text no. 51
Demichelis F, Fall K, Perner S, Andren O, Schmidt F, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 2007; 26: 4596–9.  Back to cited text no. 52
van Leenders GJ, Boormans JL, Vissers CJ, Hoogland AM, Bressers AA, et al. Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol 2011; 24: 1128–38.  Back to cited text no. 53
Paulo P, Barros-Silva JD, Ribeiro FR, Ramalho-Carvalho J, Jeronimo C, et al. FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes Cancer 2012; 51: 240–9.  Back to cited text no. 54
Dai MJ, Chen LL, Zheng YB, Chen W, Tao ZH, et al. [Frequency and transcript variant analysis of gene fusions between TMPRSS2 and ETS transcription factor genes in prostate cancer]. Zhonghua Yi Xue Za Zhi 2008; 88: 669–73. [Article in Chinese].  Back to cited text no. 55
Furusato B, van Leenders GJ, Trapman J, Kimura T, Egawa S, et al. Immunohistochemical ETS-related gene detection in a Japanese prostate cancer cohort: diagnostic use in Japanese prostate cancer patients. Pathol Int 2011; 61: 409–14.  Back to cited text no. 56
Henshall-Powell R, Yu C, Bremer R, Sesterhenn I, Tacha D. Evaluation of TMPRSS2-ERG fusion protein in prostate cancer pathogenesis across continents. Abstract. In: Laboratory Investigation. New York: Nature Publishing Group; 2011. p197A.  Back to cited text no. 57
Xiao L, Zhu XZ, Wang Y, Gong Y, Guo CC. [TMPRSS2-ERG gene fusion in metastatic prostate cancers: a study of fine needle aspiration specimens]. Zhonghua Bing Li Xue Za Zhi 2011; 40: 392–6. [Article in Chinese].  Back to cited text no. 58
Inoue T, Segawa T, Maeno A, Akamatsu S, Yoshikawa T, et al. ERG oncoprotein expression in localized prostate cancer in Japanese population. J Urol 2012; 187: e133–4.  Back to cited text no. 59
Kimura T, Furusato B, Miki J, Yamamoto T, Hayashi N, et al. Expression of ERG oncoprotein is associated with a less aggressive tumor phenotype in Japanese prostate cancer patients. Pathol Int 2012; 62: 742–8.  Back to cited text no. 60
Ren S, Peng Z, Mao JH, Yu Y, Yin C, et al. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res 2012; 22: 806–21.  Back to cited text no. 61
Suh JH, Park JW, Lee C, Moon KC. ERG immunohistochemistry and clinicopathologic characteristics in Korean prostate adenocarcinoma patients. Korean J Pathol 2012; 46: 423–8.  Back to cited text no. 62
Takahashi H, Furusato B, Kimura T, Okayasu M, Mizukami S, et al. Incidence and correlation of AKT and ERG expressions in Japanese prostate cancer. Abstract. In: Laboratory Investigation. New York: Nature Publishing Group; 2012. p244A.  Back to cited text no. 63
Wang JJ, Liu YX, Wang W, Yan W, Zheng YP, et al. Fusion between TMPRSS2 and ETS family members (ERG, ETV1, ETV4) in prostate cancers from Northern China. Asian Pac J Cancer Prev 2012; 13: 4935–8.  Back to cited text no. 64
Xing T, Pei X, Fang W, He H. Erg protein expression and PTEN loss are uncommon in prostate cancer of Chinese population. Abstract. In: Laboratory Investigation. New York: Nature Publishing Group; 2013. p. 259A.  Back to cited text no. 65
Yoon G, Park K, MacDonald T, Choi J, Chen Z, et al. Prevalence of ERG rearrangement, SPINK1 overexpression and PTEN deletion in prostate cancer of Korean men. Abstract. In: Laboratory Investigation. New York: Nature Publishing Group; 2013. p260A.  Back to cited text no. 66
Blattner M, Lee DJ, O'Reilly C, Park K, MacDonald TY, et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia 2014; 16: 14–20.  Back to cited text no. 67
Dong J, Xiao L, Sheng L, Xu J, Sun ZQ. TMPRSS2:ETS fusions and clinicopathologic characteristics of prostate cancer patients from Eastern China. Asian Pac J Cancer Prev 2014; 15: 3099–103.  Back to cited text no. 68
Jung WY, Sung CO, Han SH, Kim K, Kim M, et al. AZGP-1 immunohistochemical marker in prostate cancer: potential predictive marker of biochemical recurrence in post radical prostatectomy specimens. Appl Immunohistochem Mol Morphol 2014; 22: 652–7.  Back to cited text no. 69
Lee B, Yoon N, Choi Y. Analysis of SPOP mutation and its relationship with TMPRSS2-ERG fusion in prostate cancer. Abstract. In: Laboratory Investigation. New York: Nature Publishing Group; 2014. p244A.  Back to cited text no. 70
Qi M, Yang X, Zhang F, Lin T, Sun X, et al. ERG rearrangement is associated with prostate cancer-related death in Chinese prostate cancer patients. PLoS One 2014; 9: e84959.  Back to cited text no. 71
Raymundo EM, Diwa MH, Lapitan MC, Plaza AB, Sevilleja JE, et al. Increased association of the ERG oncoprotein expression in advanced stages of prostate cancer in Filipinos. Prostate 2014; 74: 1079–85.  Back to cited text no. 72
Suh JH, Moon KC. The relation between heterogeneity of ERG protein expression and TMPRSS2-ERG gene fusion pattern in prostate cancer. Abstract. In: Virchows Archiv. New York: Springer; 2014. p. S162.  Back to cited text no. 73
Yilmaz O, Berber U, Okcelik S, Soydan H, Ates F, et al. TMPRSS2-ERG gene fusion in Turkish patients with localized prostate cancer: results of radical prostatectomy specimens. Turk J Urol 2016; 42: 60–3.  Back to cited text no. 74
Kelly GM, Kong YH, Dobi A, Srivastava S, Sesterhenn IA, et al. ERG oncoprotein expression in prostate carcinoma patients of different ethnicities. Mol Clin Oncol 2015; 3: 23–30.  Back to cited text no. 75
Nishijima J, Hara T, Ikemoto K, Oga A, Kobayashi K, et al. Clinical significance of ERG rearrangement subtype and its association with increased p53 expression in Japanese and German prostate cancer. Neoplasma 2015; 62: 278–87.  Back to cited text no. 76
Sung JY, Jeon HG, Jeong BC, Seo SI, Jeon SS, et al. Correlation of ERG immunohistochemistry with molecular detection of TMPRSS2-ERG gene fusion. J Clin Pathol 2016; 69: 586–92.  Back to cited text no. 77
Wang L, Williamson SR, Zhang S, Huang J, Montironi R, et al. Increased androgen receptor gene copy number is associated with TMPRSS2- ERG rearrangement in prostatic small cell carcinoma. Mol Carcinog 2015; 54: 900–7.  Back to cited text no. 78
Yi FX, Li H, Wei Q, Li X, Zeng H. [Relationship between TMPRSS2:ERG and the pathological grade of prostate cancer]. Zhonghua Nan Ke Xue 2015; 21: 887–91. [Article in Chinese].  Back to cited text no. 79
Zeng W, Sun H, Meng F, Liu Z, Xiong J, et al. Nuclear C-MYC expression level is associated with disease progression and potentially predictive of two year overall survival in prostate cancer. Int J Clin Exp Pathol 2015; 8: 1878–88.  Back to cited text no. 80
Mannan R, Bhasin TS, Manjari M, Singh G, Bhatia PK, et al. Immunohistochemical expression of Ets-related gene-transcriptional factor in adenocarcinoma prostate and its correlation with Gleason score. Indian J Pathol Microbiol 2016; 59: 489–95.  Back to cited text no. 81
Noh BJ, Sung JY, Kim YW, Chang SG, Park YK. Prognostic value of ERG, PTEN, CRISP3 and SPINK1 in predicting biochemical recurrence in prostate cancer. Oncol Lett 2016; 11: 3621–30.  Back to cited text no. 82
Pan X, Zhang X, Gong J, Tan J, Yin X, et al. The expression profile and prognostic value of SPINK1 in initially diagnosed bone metastatic prostate cancer. Prostate 2016; 76: 823–33.  Back to cited text no. 83
Song W, Kwon GY, Kim JH, Lim JE, Jeon HG, et al. Immunohistochemical staining of ERG and SOX9 as potential biomarkers of docetaxel response in patients with metastatic castration-resistant prostate cancer. Oncotarget 2016; 7: 83735–43.  Back to cited text no. 84


  [Figure 1], [Figure 2], [Figure 3], [Figure 4]

  [Table 1], [Table 2]

This article has been cited by
1 Copy Number Profiles of Prostate Cancer in Men of Middle Eastern Ancestry
Alia Albawardi,Julie Livingstone,Saeeda Almarzooqi,Nallasivam Palanisamy,Kathleen E. Houlahan,Aktham Adnan Ahmad Awwad,Ramy A. Abdelsalam,Paul C. Boutros,Tarek A. Bismar
Cancers. 2021; 13(10): 2363
[Pubmed] | [DOI]
2 Survival outcomes of Asian younger men (
Yadong Lu,Hong Hong Huang,Weber Kam On Lau
International Urology and Nephrology. 2020;
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Patients and Methods
Author Contributions
Competing Interests
Article Figures
Article Tables

 Article Access Statistics
    PDF Downloaded480    
    Comments [Add]    
    Cited by others 2    

Recommend this journal