Year : 2018  |  Volume : 20  |  Issue : 5  |  Page : 488-492

Repeated penile girth enhancement with biodegradable scaffolds: Microscopic ultrastructural analysis and surgical benefits

1 School of Medicine, University of Belgrade, Belgrade 11000, Serbia University Children’s Hospital, Belgrade 11000, Serbia Institute for Urology, Clinical Center of Serbia, Belgrade 11000, Serbia

Correspondence Address:
Dr. Miroslav L Djordjevic
School of Medicine, University of Belgrade, Belgrade 11000, Serbia; University Children’s Hospital, Belgrade 11000, Serbia; Institute for Urology, Clinical Center of Serbia, Belgrade 11000, Serbia

Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/aja.aja_35_18

Rights and Permissions

Autologous tissue engineering using biodegradable scaffolds as a carrier is a well-known procedure for penile girth enhancement. We evaluated a group of previously treated patients with the aim to analyze histomorphometric changes after tissue remodeling and to estimate the benefits of repeated procedure. Between February 2012 and December 2016, a group of 21 patients, aged 22–37 (mean 28.0) years, underwent a repeated penile girth enhancement procedure with biodegradable scaffolds. Procedure included insertion of two poly-lactic-co-glycolic acid scaffolds seeded with laboratory-prepared fibroblasts from scrotal tissue specimens. During this procedure, biopsy specimens of tissue formed after the first surgery were taken for microscopic analysis. The mean follow-up was 38 months. Connective tissue with an abundance of connective tissue fibers, small blood vessels, and inflammatory cells were observed in all analyzed surgically removed tissue. Ultrastructural analysis of these tissue samples discovered the presence of large quantities of collagen fibrils running parallel to each other, forming bundles, with a few widely spread fibroblasts. In total, the mean values of flaccid and erect gain in girth after the second surgery were 1.1 ± 0.4 (range: 0.6–1.7) cm and 1.0 ± 0.3 (range: 0.6–1.5) cm, respectively. Microscopic evaluation of newly formed tissue, induced by autologous tissue engineering using biodegradable scaffolds, showed the presence of vascularized loose connective tissue with an abundance of collagen fibers, fibroblasts, and inflammatory cells, indicating active neovascularization and fibrinogenesis. The benefit of the repeated enhancement procedure was statistically significant.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded409    
    Comments [Add]    
    Cited by others 2    

Recommend this journal