INVITED ORIGINAL ARTICLE
Year : 2016  |  Volume : 18  |  Issue : 6  |  Page : 858-862

Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex


1 TECNOGAM research group, Environmental Sciences Institute (IUCA), Department of Animal Production and Food Sciences, Higher Polytechnic School, University of Zaragoza, Ctra. Cuarte S/N 22071 Huesca, Spain
2 Department of Agriculture, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
3 Department of Functional Biology and Physical Anthropology, University of Valencia, 469100 Burjassot, Valencia, Spain
4 UMR 1388 INRA-ENVT INPT Animal Cytogenetis GenPhySE, National veterinary school of Toulouse, 23 Chemin des Capelles, 31076 Toulouse Cedex 3, France
5 Mediterranean Institute of marine and terrestrial Biodiversity and Ecology (IMBE), University of Aix Marseille, Chemin de la Batterie des Lions, 13007 Marseille, France
6 TECNOGAM research group, Environmental Sciences Institute (IUCA), Department of Agricultural and Environmental Sciences, Higher Polytechnic School, University of Zaragoza, Ctra. Cuarte S/N 22071 Huesca, Spain

Correspondence Address:
Dr. Pilar Santolaria
TECNOGAM research group, Environmental Sciences Institute (IUCA), Department of Animal Production and Food Sciences, Higher Polytechnic School, University of Zaragoza, Ctra. Cuarte S/N 22071 Huesca
Spain
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.187578

Rights and Permissions

This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2476    
    Printed64    
    Emailed0    
    PDF Downloaded354    
    Comments [Add]    
    Cited by others 1    

Recommend this journal