INVITED REVIEW
Year : 2015  |  Volume : 17  |  Issue : 4  |  Page : 601-609

Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility


1 Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143; Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Centre, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
2 Proteomics Unit, Scientific and Technological Centres of the University of Barcelona (CCiTUB), Casanova 143, 08036, Barcelona, Spain
3 Clinic Institute of Gynaecology, Obstetrics and Neonatology, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain

Correspondence Address:
Rafael Oliva
Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143; Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Centre, Hospital Clinic, Villarroel 170, 08036 Barcelona
Spain
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.153302

Rights and Permissions

The classical idea about the function of the mammalian sperm chromatin is that it serves to transmit a highly protected and transcriptionally inactive paternal genome, largely condensed by protamines, to the next generation. In addition, recent sperm chromatin genome-wide dissection studies indicate the presence of a differential distribution of the genes and repetitive sequences in the protamine-condensed and histone-condensed sperm chromatin domains, which could be potentially involved in regulatory roles after fertilization. Interestingly, recent proteomic studies have shown that sperm chromatin contains many additional proteins, in addition to the abundant histones and protamines, with specific modifications and chromatin affinity features which are also delivered to the oocyte. Both gene and protein signatures seem to be altered in infertile patients and, as such, are consistent with the potential involvement of the sperm chromatin landscape in early embryo development. This present work reviews the available information on the composition of the human sperm chromatin and its epigenetic potential, with a particular focus on recent results derived from high-throughput genomic and proteomic studies. As a complement, we provide experimental evidence for the detection of phosphorylations and acetylations in human protamine 1 using a mass spectrometry approach. The available data indicate that the sperm chromatin is much more complex than what it was previously thought, raising the possibility that it could also serve to transmit crucial paternal epigenetic information to the embryo.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4162    
    Printed66    
    Emailed0    
    PDF Downloaded683    
    Comments [Add]    
    Cited by others 31    

Recommend this journal