INVITED REVIEW
Year : 2015  |  Volume : 17  |  Issue : 4  |  Page : 537-544

Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis


1 Department of Biochemistry and Molecular Biology;Department of Anatomy and Developmental Biology, Monash University; Hudson Institute of Medical Research, Monash Medical Centre; School of Clinical Sciences, Monash University, Clayton, VIC, Australia
2 Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
3 Department of Biochemistry and Molecular Biology;Department of Anatomy and Developmental Biology, Monash University; Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC, Australia
4 Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
5 Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition Osaka, Japan

Correspondence Address:
Kate L. Loveland
Department of Biochemistry and Molecular Biology;Department of Anatomy and Developmental Biology, Monash University; Hudson Institute of Medical Research, Monash Medical Centre; School of Clinical Sciences, Monash University, Clayton, VIC, Australia

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.154310

Rights and Permissions

Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3252    
    Printed56    
    Emailed0    
    PDF Downloaded485    
    Comments [Add]    
    Cited by others 15    

Recommend this journal