Table of Contents  
INVITED REVIEW
Year : 2015  |  Volume : 17  |  Issue : 1  |  Page : 40-43

Endovascular treatment of vasculogenic erectile dysfunction


University of Tennessee Graduate School of Medicine, Knoxville, TN, USA

Date of Submission04-Sep-2014
Date of Decision27-Oct-2014
Date of Acceptance28-Oct-2014
Date of Web Publication05-Dec-2014

Correspondence Address:
Ryan C Owen
University of Tennessee Graduate School of Medicine, Knoxville, TN
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.143752

Rights and Permissions
  Abstract 

The treatment of erectile dysfunction (ED) has been a fascination involving multiple medical specialities over the past century with urologic, cardiac and surgical experts all contributing knowledge toward this multifactorial disease. With the well-described association between ED and cardiovascular disease, angiography has been utilized to identify vasculogenic impotence. Given the success of endovascular drug-eluting stent (DES) placement for the treatment of coronary artery disease, there has been interest in using this same technology for the treatment of vasculogenic ED. For men with inflow stenosis, DES placement to bypass arterial lesions has recently been reported with a high technical success rate. Comparatively, endovascular embolization as an approach to correct veno-occlusive dysfunction has produced astonishing procedural success rates as well. However, after a thorough literature review, arterial intervention is only recommended for younger patients with isolated vascular injuries, typically from previous traumatic experiences. Short-term functional outcomes are less than optimal with long-term results yet to be determined. In conclusion, the hope for a minimally invasive approach to ED persists but additional investigation is required prior to universal endorsement.

Keywords: erectile dysfunction; impotence; penile erection; vasculogenic


How to cite this article:
Kim ED, Owen RC, White GS, Elkelany OO, Rahnema CD. Endovascular treatment of vasculogenic erectile dysfunction. Asian J Androl 2015;17:40-3

How to cite this URL:
Kim ED, Owen RC, White GS, Elkelany OO, Rahnema CD. Endovascular treatment of vasculogenic erectile dysfunction. Asian J Androl [serial online] 2015 [cited 2021 Jan 19];17:40-3. Available from: https://www.ajandrology.com/text.asp?2015/17/1/40/143752 - DOI: 10.4103/1008-682X.143752


  Introduction Top


From Leriche's description of aortoiliac insufficiency in 1932 [1] to Michal's seminal studies in phalloarteriography, [2] our appreciation of the significance of penile arterial insufficiency (PAI) as an etiologic factor for erectile dysfunction (ED) is the culmination of work over the last century. [3],[4] While the hope has been that penile revascularization procedures can treat broad populations of men with ED, the evidence indicates that these procedures are only suited for men with focal arterial lesions. [5],[6]

The advent of drug-eluting stents (DES) and their proven benefit in coronary applications brought renewed interest with regards to the interventional treatment of ED. Endovascular techniques, while novel and academically interesting, are practically limited by a lack of a noninvasive, anatomic method for documenting PAI before and after the intervention. Currently, the role of endovascular treatment of ED is unclear except for cases of proximal iliac disease secondary to peripheral arterial disease. [7] In light of the recent ZEN trial [8] and reports of successful embolization techniques for veno-occlusive dysfunction, [9] we examine the potential benefits and limiting factors with novel endovascular treatments for vasculogenic ED.


  Vasculogenic Erectile Dysfunction Top


Normal erectile function depends on adequate arterial inflow as well as venous outflow occlusion. Filling of the corporal sinusoids results in a suprasystolic intracaversonal pressure, up to several 100 mmHg. In the presence of either impaired caversonal smooth muscle relaxation or arterial inflow stenosis, filling of the corporeal bodies is compromised. In the case of corporeal veno-occlusive dysfunction (CVOD), the required intracavernosal pressure is unsustainable. [10] Either point of failure - compromised arterial inflow or venous leakage - may result in vasculogenic ED. [10]

The major source of arterial inflow to the penis comes from the internal pudendal artery (IPA), a branch of the internal iliac artery (IIA). The IPA eventually subdivides into the cavernosal arteries, which in turn give rise to the helicine arteries that empty into the lacunar spaces within the corpora cavernosa ([Figure 1]). [11] The tunica albuginea surrounds the paired corpora cavernosa, compressing the subtunical and emissary veins, limiting venous return from the penis through the deep dorsal vein when erect. Atherosclerotic disease of the IIA or IPA may limit the increase in blood flow required to fill the corpora cavernosa and achieve an erection.
Figure 1: Arterial blood supply to the penis. This figure is reproduced with permission from Rogers et al.[11]

Click here to view


Currently, the first-line therapy for ED is oral phosphodiesterase-5 inhibitors (PDE5i). [12] However, when oral ED therapy fails, subsequent therapies are progressively invasive and include intracavernosal injections, intraurethral suppositories, vacuum erection devices, and penile prostheses. [12] In the presence of a proximal fixed obstruction to arterial flow, corpora cavernosa filling may be limited despite endothelial, smooth muscle relaxation and such scenarios may result in sub-optimal response to PDE5i. Interventional treatment of atherosclerotic disease in the IIA and IPA may, therefore, offer another approach to ED refractory to current first-line therapies.


  Zen Trial Top


The Zotarolimus-Eluting Peripheral Stent System (Medtronic, Minneapolis MN, USA) for the treatment of ED in males with sub-optimal response to PDE5 inhibitors (ZEN) trial, published in 2012, [8] was the first trial of DES for the treatment of ED. While recruitment methods were not reported, 383 subjects were screened, and those with an International Index of Erectile Function 6 (IIEF-6) baseline of < 22 proceeded to a 4 week run-in phase. The authors describe the use of the IIEF-6 score, which is a modified IIEF, that takes six questions from the IIEF that have the highest discriminating power to diagnose ED. [13] The run-in phase consisted of a 4 weeks trial of PDE5i and a required minimum of four sexual encounters. At the end of the run-in phase, patients with IIEF-6 scores remaining < 22 who reported ED for 50% or more of their sexual encounters were screened by penile Doppler ultrasound and those with adequate systolic velocity as well as those with venous leak were excluded from the trial. Invasive penile angiography criteria were designed to include patients with unilateral or moderate to severe bilateral stenosis of the IPA. Patients with ≥ 70% stenosis of non-IPA erectile-related arteries were excluded. Ultimately 30 out of 383 screened subjects (7.8%) were enrolled in the trial ([Figure 2]) [14] - procedural success was 100%, and no adverse events were reported at 30 days.
Figure 2: Left panel: Atherosclerotic narrowing in the internal pudendal artery resulting in poor arterial inflow and ED with suboptimal filling of penile cavernosal tissue. Right panel: Improved arterial inflow after implantation of a zotarolimus-eluting peripheral stent system. This figure is reproduced with permission from Rogers et al.[14]

Click here to view


Mean IIEF-6 domain scores were 15.5 ± 4.2 preprocedure, 22.4 ± 6.3 at 3 months, and 21.8 ± 6.5 at 6 months. The feasibility endpoint was defined as an IIEF domain score increase of at least 4 in over half of subjects at 3 months. Despite a positive trend, increases in total IIEF-6 scores and peak systolic velocity at 3 and 6 months, follow-up was limited by a small sample size, accompanied by large standard deviations and a lack statistical significance. Such variance in the ZEN data makes definitive conclusions with regards to treatment efficacy difficult to establish.

While the ZEN trial defined PDE5i nonresponders as those patients demonstrating IIEF-6 scores < 22 at the end of the 4 week run-in phase, much remains unclear regarding each patient's experience with these drugs before the trial and during the period following intervention. It is unknown whether the patients had been taking PDE5i with insufficient response prior to beginning the run-in phase, or if the run-in phase was the initial attempt at first-line pharmacotherapy. The authors note that PDE5i therapy was continued in patients after intervention as was "clinically indicated." Given the variety of protocols for PDE5i treatment for ED, it would be valuable to know the specific details concerning the drugs, dosage and dosing regimens for study patients both during the run-in phase and following stent placement.

One significant limitation of the ZEN trial was its exclusion of patients taking nitrates. Nitrates are frequently used to treat anginal symptoms in cardiac patients, and with growing data supporting nitrate/hydralazine combination therapy in select patients with symptomatic congestive heart failure (CHF), [15] their use for this indication is likely to increase. Given the increased prevalence of ED among patients with coronary artery disease (CAD) or CHF, [16],[17] the exclusion of these patients in examining the benefits of endovascular treatment for ED overlooks a significant population of patients who may benefit.

Zotarolimus is an mTOR inhibitor, an immunosuppressive agent indicated for use in coronary DES. DES, such as the zotarolimus-eluting stent used in the ZEN trial, are designed to provide controlled local release of immunosuppressive agents thereby slowing the rate of stent neointimalization and reducing the rate of restenosis. This benefit is not without cost, as patients receiving coronary DES require a minimum of 12 months of dual antiplatelet therapy with aspirin and a P2Y12 inhibitor such as clopidogrel to offset the increased risk of stent thrombosis. [18] Neither the authors of the ZEN trial nor subsequent review authors have addressed the risks inherent to long-term dual-agent antiplatelet therapy.

While the combination of aspirin and clopidogrel or other P2Y12 inhibitors represents the mainstay of pharmacotherapy after endovascular stent placement, this treatment regimen is not without significant risk. In a meta-analysis of patients on daily P2Y12 inhibitor therapy, patients taking clopidogrel had a 3.88% risk of major bleeding events and a 5.87% risk of major or minor bleeding events as defined by the Thrombolysis in Myocardial Infarction trial. [19],[20] Although these risks are widely regarded as acceptable when balanced against the risk of coronary stent thrombosis and subsequent myocardial ischemia, there are likely a number of patients for whom the restoration of erectile function does not outweigh the increased bleeding risk. On the other hand, given the correlation between CAD and concomitant ED, there is likely a population of patients with ED already on dual antiplatelet therapy for which the placement of a DES would confer no additional pharmacotherapeutic risk. By excluding patients on nitrates for the purpose of demonstrating PDE5i nonresponse via a run-in phase, the protocol of the ZEN trial overlooks this potential patient population.

The choice to use DES in the ZEN trial was made partially on the assumption that smaller arteries are more prone to restenosis, and thus the effects of zotarolimus would be particularly beneficial in this case. However, the observed restenosis of 11 out of 32 lesions (34.4%) represents a significantly increased rate of restenosis compared to 9.2% for DES placed in the coronary vasculature. [21] This finding suggests that the zotarolimus, for unknown reasons, may have less of an effect in the small pelvic vasculature than direct extrapolation from cardiac data would predict.

Given the risks associated with dual antiplatelet therapy and the relatively high rate of restenosis despite the elution of zotarolimus from the stent, it is reasonable to consider the use of bare metal stents (BMS). BMS require a shorter duration of dual antiplatelet therapy (minimum 1 month) [18] compared to DES and thus reduce the bleeding risks in patients not taking antiplatelet agents for another indication.


  Limitations Top


There is a lack of radiographic data correlating pelvic arterial disease with ED. The Incidence of Male Pudendal Artery Stenosis in Sub-optimal Erections Study (IMPASSE) was designed by the ZEN investigators to define normal pelvic vascular anatomy and examine the relationship between pelvic arterial disease and ED. [7] However, this study was terminated and results were never published due to similar difficulties in patient selection that limited the scope of the ZEN trial. The acquisition of this information is critical for predicting an optimal population for future trials. An attempt for a trial similar to IMPASSE is needed, as utility of pudendal stenting hinges upon general population analysis of IPA stenosis.





It has been demonstrated that blunt pelvic trauma can initiate a cascade of events resulting in endothelial dysfunction and ultimately a reactive atherosclerotic process resulting in focal stenosis. [22] The distal IPA passing through Alcock's canal is especially susceptible to blunt mechanical trauma and compression against the ischio-pubic ramus. [22] While penile revascularization has been occasionally attempted in such cases, these procedures are technically complex and should only be performed by surgeons experienced with this procedure. [11] Given the feasibility of IPA stenting with DES, as demonstrated by the ZEN trial, we propose that such endovascular interventions may ultimately be ideally suited for rare and difficult to treat cases of ED in young men with focal atherosclerotic disease secondary to blunt pelvic trauma.

In contrast to these young patients with focal disease are older subjects who have diffuse atherosclerotic disease. ED in this population is secondary to potential plaque formation in all vasculature involved with penile tumescence. [14] Whereas stenting men with focal lesions causing ED has provided successful outcomes, percutaneous intervention in men with widespread atherosclerosis has not proven beneficial and therefore excludes a large population of men with ED who have diffuse vascular disease.


  Veno-Occlusive Dysfunction Top


Surgical options for ED secondary to venous leak have historically been limited to open surgical ligation of the deep dorsal vein and its collaterals with a reported success rate of 25%. [23],[24] Aschenbach et al. [9] reported an 88.8% clinical success rate after endovascular venous embolization therapy with histoacryl-lipiodol. In this trial of 29 patients, the diagnosis of CVOD was confirmed with pharmacocavernosometry and cavernosography. This procedure had a high technical success rate and was performed on an outpatient basis under local anesthesia. Furthermore, no complications were experienced throughout the trial. Given the paucity of reliable options for the treatment of CVOD, Aschenbach's minimally invasive percutaneous venous embolization technique with histoacryl-lipiodol is an important and encouraging advancement that merits further study.

However, isolated and focal venous leaks are a rare cause of ED. Rather corporal CVOD has been recognized as the true underlying cause for most cases of venous leak. CVOD may occur as a result of age or injury related changes to the tunica albuginea, cavernosal smooth muscle dysfunction from structural alterations, excessive adrenergic input or from shunts created during priapism episodes and subsequent repair. [10] Although poor venous occlusion may be the underlying mechanical defect, other factors play a role in the etiology of CVOD negating single vessel occlusion from endovascular techniques as a viable solution for the majority of the effected population. Therefore, the long-term results of venous embolization therapy need to be substantiated as durability was not shown with venous ligation surgery.


  Discussion Top


The etiology of vasculogenic ED is complex and multifactorial. Most patients with long-standing atherosclerotic disease will likely not be good candidates for IPA stenting due to the diffuse nature of atherosclerotic disease. Appropriate patient selection will be paramount for success and depend on clinicians' abilities to interpret imaging data and correlate degrees of atherosclerotic burden with severity of ED. More accurate and noninvasive methods for the diagnosis of focal stenotic lesions that are likely amenable to endovascular revascularization techniques will provide added benefit in patient selection. Moreover, techniques such as computed tomographic angiography (CTA) to evaluate pelvic arterial lesions are currently being studied by Wang et al. [25] for planned percutaneous angioplasty of distal penile vasculogenic lesions in the PERFECT-1 study. [26] Results indicate a positive correlation between obstructive lesions identified at the time of intervention and those previously discovered on CTA. Such noninvasive imaging has the potential to identify a larger subset of men with ED secondary to isolated obstructive lesions.

Microsurgical arterial reconstruction with various conduits was attempted from the 1970s until the early 2000s, but such procedures are technically complex and only a few surgeons have routinely attempted to utilize this technique in select patient populations - typically young men with pelvic trauma. [22] Only four studies describing microsurgical penile artery bypass for focal stenosis secondary to blunt pelvic trauma are considered good quality. Also, revascularization surgery is considered "experimental" by the American Urological Association. [27] In the 1980s and 1990s transluminal angioplasty without stenting was attempted with varying results in a short clinical follow-up period. [7] Collectively, studies report a total of 65 patients with an average success rate of 55% [28],[29],[30],[31],[32],[33] The vast majority of these interventions were directed at the larger iliac arteries, with only three interventions at the IPA. [7] It has been postulated that failure of these techniques may have been due to high rates of restenosis. [8]

Montorsi's artery size hypothesis [34] and theories linking ED to CAD are based on the fact that the small diameter helicine arteries become damaged early in the atherosclerotic process. If this were true then, these patients would not benefit from endovascular treatment as endovascular access and stenting of these extremely small vessels is not possible. While the artery-size hypothesis partially explains the complex relationship between ED and CAD, evidence exists to suggest that vasculogenic ED is not entirely due to atherosclerosis of the erectile related arteries. Rather, microscopic endothelial and various autonomic factors likely play a major role in the pathogenesis. [16] Thus, it remains unclear whether relief of the macroscopic inflow stenosis is a viable and efficient means of treating complex vasculogenic ED.

In summary, endovascular intervention with angioplasty and DES placement offers hope for men with ED from focal arterial lesions resulting from blunt trauma. However, long-term data will be required to evaluate its efficacy fully. Although hemodynamically feasible, the pathophysiology of ED is commonly multifactorial, even in such isolated lesions. Whereas coronary and peripheral vasculature are often amenable to luminal diameter increases that result in long-term patency, the penile anatomy is co-dependent on surrounding anatomy for successful tumescence. Furthermore, when endothelial dysfunction, microvascular changes or structural defects that result in CVOD accompany arterial inflow stenosis, isolated therapy with endovascular stent placement becomes less effective. The hope for a less invasive method to treat ED in select populations may be possible in the future, but its time is not right now.


  Author Contributions Top


EDK participated in creative design, manuscript review and revision, project supervisor; RCO conducted literature review, creative design, assist with manuscript drafting, revision and review; GSW participated in creative design and manuscript review; CDR conducted literature review, creative design, drafted manuscript, review and revision. OOE participated creative design.


  Competing Interests Top


The authors declare no competing interests.

 
  References Top

1.
Leriche R, Morel A. The syndrome of thrombotic obliteration of the aortic bifurcation. Ann Surg 1948; 127: 193-206.  Back to cited text no. 1
    
2.
Michal V, Pospichal J. Phalloarteriography in the diagnosis of erectile dysfunciton. World J Surg 1978; 2: 239-48.  Back to cited text no. 2
    
3.
Rosen MP, Greenfield AJ, Walker TG, Grant P, Guben JK, et al. Arteriogenic impotence: findings in 195 impotent men examined with selective internal pudendal angiography. Young Investigator's Award. Radiology 1990; 174: 1043-8.  Back to cited text no. 3
    
4.
Vlachopoulos C, Rokkas K, Ioakeimidis N, Aggeli C, Michaelides A, et al. Prevalence of asymptomatic coronary artery disease in men with vasculogenic erectile dysfunction: a prospective angiographic study. Eur Urol 2005; 48: 996-1002.  Back to cited text no. 4
    
5.
Wespes E, Wildschutz T, Roumeguere T, Schulman CC. The place of surgery for vascular impotence in the third millennium. J Urol 2003; 170: 1284-6.  Back to cited text no. 5
    
6.
Sohn M, Hatzinger M, Goldstein I, Krishnamurti S. Standard operating procedures for vascular surgery in erectile dysfunction: revascularization and venous procedures. J Sex Med 2013; 10: 172-9.  Back to cited text no. 6
    
7.
Shishehbor MH, Philip F. Endovascular treatment for erectile dysfunction: an old paradigm revisited. J Am Coll Cardiol 2012; 60: 2628-30.  Back to cited text no. 7
    
8.
Rogers JH, Goldstein I, Kandzari DE, Köhler TS, Stinis CT, et al. Zotarolimus-eluting peripheral stents for the treatment of erectile dysfunction in subjects with suboptimal response to phosphodiesterase-5 inhibitors. J Am Coll Cardiol 2012; 60: 2618-27.  Back to cited text no. 8
    
9.
Aschenbach R, Steiner T, Kerl MJ, Zangos S, Basche S, et al. Endovascular embolisation therapy in men with erectile impotence due to veno-occlusive dysfunction. Eur J Radiol 2013; 82: 504-7.  Back to cited text no. 9
    
10.
Lue TF. Erectile dysfunction. N Engl J Med 2000; 342: 1802-13.  Back to cited text no. 10
    
11.
Rogers JH, Rocha-Singh KJ. Endovascular therapy for vasculogenic erectile dysfunction. Curr Treat Options Cardiovasc Med 2012; 14: 193-202.  Back to cited text no. 11
    
12.
Hatzimouratidis K, Eardley I, Giuliano F, Hatzichristou D, Moncada I, et al. Guidelines on male sexual dysfunction: erectile dysfunction and premature ejaculation. Eur Assoc Urol 2014; 17-27.  Back to cited text no. 12
    
13.
Ramanathan R, Mulhall J, Rao S, Leung R, Martinez Salamanca JI, et al. Predictive correlation between the International Index of Erectile Function (IIEF) and Sexual Health Inventory for Men (SHIM): implications for calculating a derived SHIM for clinical use. J Sex Med 2007; 4: 1336-44.  Back to cited text no. 13
    
14.
Rogers JH, Karimi H, Kao J, Link D, Javidan J, et al. Internal pudendal artery stenoses and erectile dysfunction: correlation with angiographic coronary artery disease. Catheter Cardiovasc Interv 2010; 76: 882-7.  Back to cited text no. 14
    
15.
Taylor AL. The African American heart failure trial: a clinical trial update. Am J Cardiol 2005; 96: 44-8.  Back to cited text no. 15
    
16.
Gandaglia G, Briganti A, Graham J, Kloner R, Montorsi F, et al. A systematic review of the association between erectile dysfunction and cardiovascular disease. Eur Urol 2013.  Back to cited text no. 16
    
17.
Schwarz E, Rastogi S, Kapur V, Sulemanjee N, Rodriguez J. Erectile dysfunction in heart failure patients. J Am Coll Cardiol 2006; 48: 1111-9.  Back to cited text no. 17
    
18.
Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 2012; 79: 453-95.  Back to cited text no. 18
    
19.
Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, et al. Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 1987; 76: 142-54.  Back to cited text no. 19
    
20.
Tang XF, Fan JY, Meng J, Jin C, Yuan JQ, et al. Impact of new oral or intravenous P2Y12 inhibitors and clopidogrel on major ischemic and bleeding events in patients with coronary artery disease: a meta-analysis of randomized trials. Atherosclerosis 2014; 233: 568-78.  Back to cited text no. 20
    
21.
Yeung AC, Leon MB, Jain A, Tolleson TR, Spriggs DJ, et al. Clinical evaluation of the Resolute zotarolimus-eluting coronary stent system in the treatment of de novo lesions in native coronary arteries: the RESOLUTE US clinical trial. J Am Coll Cardiol 2011; 57: 1778-83.  Back to cited text no. 21
    
22.
Dicks B, Bastuba M, Goldstein I. Penile revascularization - contemporary update. Asian J Androl 2013; 15: 5-9.  Back to cited text no. 22
    
23.
Katzenwadel A, Popken G, Wetterauer U. Penile venous surgery for cavernosal venous leakage: long-term results and retrospective studies. Urol Int 1993; 50: 71-6.  Back to cited text no. 23
    
24.
Lewis R. Venous surgery in the patient with erectile dysfunction. Urol Clin North Am 1993; 1: 21.  Back to cited text no. 24
    
25.
Wang T, Lee W, Chen W, Chen M. Comprehensive assessment of prevalence and distribution of obstuctive pelvic arterial lesions by computed tomographic angiography in patients with erectile dysfunction. J Am Coll Cardiol 2013; 62: B160.  Back to cited text no. 25
    
26.
Wang TD, Lee WJ, Yang SC, Lin PC, Tai HC, et al. Safety and six-month durability of angioplasty for isolated penile artery stenoses in patients with erectile dysfunction: a first-in-man study. EuroIntervention 2014; 10: 147-56.  Back to cited text no. 26
    
27.
Montague D, Jarrow J, Broderick G, Dmochowski R, Heaton J, et al. The Management of Erectile Dysfunction: an Update. American Urological Association Education and Research, Inc.; 2005. p. 1-24. Available from: http://www.auanet.org/common/pdf/education/clinical-guidance/Erectile-Dysfunction.pdf.  Back to cited text no. 27
    
28.
Castaneda-Zuniga WR, Gomes A, Weens C, Ketchum D, Amplatz K. Transluminal angioplasty in the management of mesenteric angina. Rofo 1982; 137: 330-2.  Back to cited text no. 28
    
29.
Van Unnik JG, Marsman JW. Impotence due to the external iliac steal syndrome treated by percutaneous transluminal angioplasty. J Urol 1984; 131: 544-5.  Back to cited text no. 29
    
30.
Goldwasser B, Carson CC 3 rd , Braun SD, McCann RL. Impotence due to the pelvic steal syndrome: treatment by iliac transluminal angioplasty. J Urol 1985; 133: 860-1.  Back to cited text no. 30
    
31.
Dewar ML, Blundell PE, Lidstone D, Herba MJ, Chiu RC. Effects of abdominal aneurysmectomy, aortoiliac bypass grafting and angioplasty on male sexual potency: a prospective study. Can J Surg 1985; 28: 154-6, 9.  Back to cited text no. 31
    
32.
Angelini G, Pezzini F, Mucci P. Arteriosclerosis and impotence. Minerva Psichiatr 1985; 26: 353-17.  Back to cited text no. 32
    
33.
Urigo F, Pischedda A, Maiore M, Salis A, Picciau M, et al. Role of arteriography and percutaneous transluminal angioplasty in the diagnosis and treatment of arterial vasculogenic impotence. Radiol Med 1994; 88: 86-92.  Back to cited text no. 33
    
34.
Montorsi P, Ravagnani P, Galli S, Rotatori F, Briganti A, et al. The artery size hypothesis: a macrovascular link between erectile dysfunction and coronary artery disease. Am J Cardiol 2005; 96: 19M-23.  Back to cited text no. 34
    


    Figures

  [Figure 1], [Figure 2]


This article has been cited by
1 MODERN ENDOVASCULAR TREATMENT METHODS FOR ERECTILE DYSFUNCTION: A CRITICAL ANALYSIS
Magdalena Piegza,Mateusz Paterak,Michal Blachut,Jacek Piegza
Wiadomosci Lekarskie. 2020; 73(9): 2049
[Pubmed] | [DOI]
2 Promising role of medicinal plants in the regulation and management of male erectile dysfunction
Nelisiwe Prenate Masuku,Jeremiah Oshiomame Unuofin,Sogolo Lucky Lebelo
Biomedicine & Pharmacotherapy. 2020; 130: 110555
[Pubmed] | [DOI]
3 Endovascular and two-stage combined revascularization of the penis at arteriogenic erectile dysfunction
E. A. Povelitsa,A. V. Bystrenkov,V. N. Podgaiski,O. V. Parhomenko,N. I. Dosta,A. ?. Shesternja
Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019; 16(1): 77
[Pubmed] | [DOI]
4 Implantation of bioresorbable vascular scaffold for the treatment of pudendal artery stenosis and erectile dysfunction
Arif Al-Nooryani,Galal Alli Abdalla,Tharwat Abdul Ghafar,Amit Bhatia,Branko Beleslin
Andrologia. 2018; : e13153
[Pubmed] | [DOI]
5 Cardiovascular disease and male sexual dysfunction
Martin Miner,EdwardD Kim
Asian Journal of Andrology. 2015; 17(1): 3
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Vasculogenic Ere...
Zen Trial
Limitations
Veno-Occlusive D...
Discussion
Author Contributions
Competing Interests
Young Men With B...
References
Article Figures

 Article Access Statistics
    Viewed3918    
    Printed64    
    Emailed0    
    PDF Downloaded569    
    Comments [Add]    
    Cited by others 5    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]