Close
  Indian J Med Microbiol
 

Figure 3: MBD-Seq confirms that SATI satellite repeats at centromeres and noncentromeric regions have increased methylation in obese rat spermatozoa. A completely different methylation assay (MBD-Seq) confirmed the pyrosequencing observations, of increased methylation at SATI sequences but not LINE or IAP elements. Furthermore MBD-Seq read counts at every SATI cluster investigated were higher in obese rat spermatozoa than those from control rats (after normalization to total reads per sample). From left to right, the first three comparisons are total genome-wide MBD-Seq sequence regions with IAP, LINE, and SATI homology. The next four comparisons are at SATI clusters at centromeres of metacentric chromosomes, the next three are clusters are at the centromeres of telocentric chromosomes and the last five are clusters at noncentromeric regions. Data are mean ± s.d. (4 rats per group). The X-axis indicates the chromosome number, location to the nearest Mb and cluster s

Figure 3: MBD-Seq confirms that SATI satellite repeats at centromeres and noncentromeric regions have increased methylation in obese rat spermatozoa. A completely different methylation assay (MBD-Seq) confirmed the pyrosequencing observations, of increased methylation at SATI sequences but not LINE or IAP elements. Furthermore MBD-Seq read counts at every SATI cluster investigated were higher in obese rat spermatozoa than those from control rats (after normalization to total reads per sample). From left to right, the first three comparisons are total genome-wide MBD-Seq sequence regions with IAP, LINE, and SATI homology. The next four comparisons are at SATI clusters at centromeres of metacentric chromosomes, the next three are clusters are at the centromeres of telocentric chromosomes and the last five are clusters at noncentromeric regions. Data are mean ± s.d. (4 rats per group). The X-axis indicates the chromosome number, location to the nearest Mb and cluster s