REVIEW
Ahead of Print

NC1-peptide derived from collagen α3 (IV) chain is a blood-tissue barrier regulator: lesson from the testis


1 The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
2 The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA

Correspondence Address:
C Yan Cheng,
The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA

Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/aja.aja_44_20

PMID: 32896837

Collagen α3 (IV) chains are one of the major constituent components of the basement membrane in the mammalian testis. Studies have shown that biologically active fragments, such as noncollagenase domain (NC1)-peptide, can be released from the C-terminal region of collagen α3 (IV) chains, possibly through the proteolytic action of metalloproteinase 9 (MMP9). NC1-peptide was shown to promote blood–testis barrier (BTB) remodeling and fully developed spermatid (e.g., sperm) release from the seminiferous epithelium because this bioactive peptide was capable of perturbing the organization of both actin- and microtubule (MT)-based cytoskeletons at the Sertoli cell–cell and also Sertoli–spermatid interface, the ultrastructure known as the basal ectoplasmic specialization (ES) and apical ES, respectively. More importantly, recent studies have shown that this NC1-peptide-induced effects on cytoskeletal organization in the testis are mediated through an activation of mammalian target of rapamycin complex 1/ribosomal protein S6/transforming retrovirus Akt1/2 protein (mTORC1/rpS6/Akt1/2) signaling cascade, involving an activation of cell division control protein 42 homolog (Cdc42) GTPase, but not Ras homolog family member A GTPase (RhoA), and the participation of end-binding protein 1 (EB1), a microtubule plus (+) end tracking protein (+TIP), downstream. Herein, we critically evaluate these findings, providing a critical discussion by which the basement membrane modulates spermatogenesis through one of its locally generated regulatory peptides in the testis.


[FULL TEXT] [PDF]
Print this article
Search
 Back
 
  Search Pubmed for
 
    -  Liu SW
    -  Li HT
    -  Ge RS
    -  Cheng C Y
 Citation Manager
 Article Access Statistics
 Reader Comments
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed100    
    PDF Downloaded13    

Recommend this journal