ORIGINAL ARTICLE
Ahead of print publication  

Initial experience with a novel method for cognitive transperineal magnetic resonance imaging-targeted prostate biopsy


1 Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
2 Department of Radiology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China

Date of Submission14-Oct-2018
Date of Acceptance16-Jun-2019
Date of Web Publication27-Aug-2019

Correspondence Address:
Xu Gao,
Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433
China
Ying-Hao Sun,
Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/aja.aja_83_19

PMID: 31464205

  Abstract 


A cognitive magnetic resonance imaging (MRI)-targeted prostate biopsy conducted by an experienced clinician enhances the detection rate of (high-grade) prostate cancer; however, this method is less successful in the hands of inexperienced surgeons. Therefore, an alternative method of conducting a cognitive MRI-targeted biopsy that can be successfully performed by the inexperienced clinicians should be developed. Ninety-six males suspected of prostate cancer were analyzed using systematic biopsy and cognitive MRI-targeted biopsy based on our novel three-dimensional matrix positioning method. Typically, the core principle of the latter procedure was to put the MRI and ultrasound images into the same virtual coordinate system. Afterward, the targeted biopsy was transformed to target a coordinate for the suspected lesion in the MRI. Subsequently, patients were assessed for the presence/absence of prostate cancer or high-grade prostate cancer. According to our results, the overall detection rate of prostate cancer was 70.8% (68/96), and the detection rate of high-grade prostate cancer was 56.3% (54/96). Specifically, the detection rate of prostate cancer by systematic biopsy was 54.2% (52/96) and that by targeted biopsy was 59.4% (57/96; P = 0.560). Clearly, the combined application of targeted biopsy could remarkably increase the detection rates of prostate cancer (P = 0.025) and high-grade prostate cancer (P = 0.009). Taken together, the findings of this study suggest that the combination of systematic biopsy with our three-dimensional matrix positioning-driven cognitive-targeted biopsy is superior to systematic biopsy in detecting prostate cancer and high-grade prostate cancer.

Keywords: cognitive fusion; targeted biopsy; three-dimensional


Article in PDF

How to cite this URL:
Wang HF, Chen R, He BM, Qu M, Wang Y, Lin HZ, Yang QS, Gao X, Sun YH. Initial experience with a novel method for cognitive transperineal magnetic resonance imaging-targeted prostate biopsy. Asian J Androl [Epub ahead of print] [cited 2019 Sep 15]. Available from: http://www.ajandrology.com/preprintarticle.asp?id=265484

Hai-Feng Wang, Rui Chen
These authors contributed equally to this work.





  Introduction Top


Prostate cancer is the most commonly diagnosed noncutaneous malignancy, which also is the second leading cause of cancer-related death in men worldwide.[1] Prostate cancer can be diagnosed based on systematic prostate biopsy. Guidelines from the European Association of Urology recommend that patients who meet the indications for biopsy should receive a transrectal ultrasound-guided extended and systematic 10–12-core biopsy.[2] However, such a random sampling strategy may fail to detect prostate cancer,[3] which may also be ineffective at assessing the disease aggressiveness.[4] Multiparametric magnetic resonance imaging (MRI) may increase the diagnosis rate of clinically significant prostate cancer and assist in identifying the location of the suspected lesion.[5] Notably, in-bore MRI-guided biopsy can detect disease at a higher rate than that of systematic biopsy. In addition, the combination of MRI with ultrasound may further increase the detection rate of prostate cancer; to be specific, biopsies that are targeted by the fusion of MRI and ultrasound under the guidance of transrectal ultrasound can achieve a disease detection rate of 34%, which is higher than 27% achievable by systematic biopsy.[6]

However, expensive equipment or specialized software is required for in-bore MRI-guided biopsy and software coregistration fusion biopsy, so performing MRI and real-time ultrasound is restricted in hospitals, particularly in those with limited resources or small caseloads.[7] Under such circumstances, visual estimation (cognitive) fusion techniques may be more practical, which also have an ability of diagnosing any prostate cancer and clinically significant prostate cancer similar to the expensive options.[8],[9] However, such approaches require considerable skills and are often effective only in the hands of experienced clinicians.[7]

In this study, a three-dimensional (3D) matrix positioning method was described to assist the surgeons in targeting prostate cancer lesions on ultrasound in a cognitive fusion-targeted biopsy approach. Moreover, its ability to detect any prostate cancer and high-grade prostate cancer was compared with the performance of systematic biopsy.


  Patients and Methods Top


Study population

This study was approved by the Research Ethics Committee of Shanghai Changhai Hospital (Shanghai, China), and 96 men with clinically suspected prostate cancer and adequate clinical information treated at Shanghai Changhai Hospital between April 2014 and February 2017 were enrolled. Written informed consent was obtained from every patient. All participants underwent multiparametric MRI using a 1.5- or 3.0-T device, followed by MRI-based transperineal ultrasound-guided prostate biopsy. Data for all patients were prospectively collected and retrospectively reviewed. Two radiologists with over 10 years of MRI experience (Qing-Song Yang) were responsible for evaluating and rating the images according to the Prostate Imaging Reporting and Data System (PI-RADS).[10] The clinically significant disease was defined as high-grade prostate cancer (Gleason score of ≥7).

Biopsy

Prostate biopsies were performed in accordance with standard procedures using a biopsy gun (Magnum MG15-22; Bard, Tempe, AZ, USA) equipped with a biopsy needle (18G, 130; Bard) under the guidance of a Flex focus 800 ultrasound device (Peabody, MA, USA) equipped with a bi-planar transrectal transducer (8848, BK Ultrasound, Peabody, MA, USA). The biopsy was performed under freehand without the guidance of a template or any other auxiliary tools.

Cognitive fusion-targeted biopsy aided by a novel 3D matrix positioning method

In this method, transperineal prostate biopsy was performed under the guidance of transrectal ultrasound. During this procedure, the z-axis was defined as the vertical axis of the prostate, the x-axis was the horizontal line on the prostate axial plane, and the y-axis was the vertical line of the x-axis on the axial plane. Typically, these three axes were used to define the locations of the suspected lesions based on MRI. The z-axis coordinate was determined by calculating the distance from the apex level to the proximal ejaculation duct level [Figure 1].
Figure 1: Schematic diagram of cognitive fusion targeted biopsy aided by a novel 3D matrix positioning method. (a) The 3D matrix in an MRI image. The MRI showed a suspicious lesion in the left peripheral zone, middle of the gland. A cognitive 3D matrix was developed based on the MRI image, the direction of the x-axis was from right to left of the sectional plane of the gland and the y-axis was from posterior to anterior. In addition, the direction of the z-axis was from base to apex of the sagittal plane of the gland. The suspicious lesion was located from 7.5 to 9.5 in the x-axis (range: 0–10.5), from 0.5 to 2 in the y-axis (range: 0–6.5) and 5 in the z-axis (range: 1–8). The coordinate of the suspicious lesion was (7.5–9.5, 0.5–2, 5) in the 3D matrix position. (b) The 3D matrix in an ultrasound image. The suspicious lesion was found in the bi-planar ultrasound image according to the 3D matrix, which was developed from the MRI image. MRI: magnetic resonance imaging; 3D: three-dimensional.

Click here to view


The 3D axis coordinates were used to identify the lesion location under the guidance of ultrasound as follows. The transverse sagittal plane with the suspected lesion was confirmed based on the z-axis coordinate calculated previously from MRI. Furthermore, the axial plane with the suspected lesion was determined according to the x- and y-axis coordinates calculated from MRI [Figure 1].

Based on the matrix points derived from ultrasound images, the needle could be penetrated into the suspected lesion site, and its direction should be adjusted toward the suspected lesion [Figure 1]; subsequently, the puncture gun was triggered. A real case is presented in [Figure 2].
Figure 2: Representative (a) T2-weighted magnetic resonance image and (b) ultrasound image of the prostate in a patient. The red arrow indicates the suspected lesion in the prostate; the green arrow shows the public bone; and the blue arrow identifies the mid-line of the prostate in the axial plane. The x-axis (red dots) and y-axis (green dots) extend across the center of the suspected lesion. In this patient, the lesion was located in the prostate's posterior third of the y-axis and along the inside third of the x-axis. In the ultrasound image, we first identified the red arrow and the green arrow, then we identified the x- and y-axes based on the relative location of the blue arrow. The lesion was then located in the MRI image in the prostate's posterior third of the y-axis and inside third of the x-axis. MRI: magnetic resonance imaging.

Click here to view


Statistical analyses

Data were analyzed using SPSS 15.0 (IBM, Armonk, NY, USA). Categorical data were compared between groups using the Chi-square or Fisher's exact test, while continuous data were compared by Student's t-test or the Mann–Whitney U test. All P values were two-sided, and a difference of P < 0.05 was considered statistically significant.


  Results Top


Patient characteristics

A total of 96 patients were enrolled in this study. Among them, 64 (66.7%) were naive to biopsy, and the remaining 32 (33.3%) had received at least one negative biopsy previously. The clinical information of the enrolled patients is illustrated in [Table 1]. As could be observed, the median age of patients was 67 years. Furthermore, there were 44 (45.8%) patients with a prostate-specific antigen (PSA) level of <10 ng ml −1, 42 (43.8%) of 10–20 ng ml −1, and 10 (10.4%) of 20–30 ng ml −1, yielding the median PSA level of 10.48 ng ml −1. Sextant or 12-core systematic biopsies were performed in all patients, and a median biopsy core of three was applied for each suspected lesion on MRI, in accordance with the consensus of the American Urological Association (AUA) and the Society of Abdominal Radiology (SAR) to take at least two cores [Table 1].[11]
Table 1: Patient baseline information

Click here to view


A total of 105 lesions were observed, with PI-RADS scores of 3–5. Specifically, 89 patients had only one suspected lesion and seven had two suspected lesions; furthermore, 33 patients had lesions with a PI-RADS score of 3, 38 with a score of 4, and 25 with a score of 5. In addition, the lesion diameter ranged from 0.2 cm to 2.4 cm, with a median of 1.0 (interquartile range [IQR]: 0.7–1.2) cm, and the median estimated lesion size was 0.56 (IQR: 0.33–1.03) cm2.

Detection rates of prostate cancer and high-grade prostate cancer

The overall detection rate of prostate cancer was 70.8% (68/96; [Table 2]); specifically, the detection rate by systematic biopsy was 54.2% (52/96) and that by targeted biopsy alone was 59.4% (57/96; P = 0.560). Clearly, a combination of targeted biopsy and systematic biopsy remarkably increased the detection rate of prostate cancer compared with that by systematic biopsy alone (72.9% [70/96] vs 56.3% [54/96]; P = 0.025). Moreover, 16 of the 68 (23.5%) prostate cancer cases were missed by systematic biopsy, and 11 of 68 (16.2%) cases, including six cases with high-grade prostate cancer, were missed by targeted biopsy alone.
Table 2: Comparison of biopsy results from systematic biopsies and magnetic resonance imaging-targeted biopsies

Click here to view


The overall detection rate of high-grade prostate cancer was 56.3% (54/96). Specifically, the detection rate by systematic biopsy was 36.5% (35/96) and that by targeted biopsy was 46.9% (45/96, P = 0.188). It was obvious that the combined application of targeted biopsy and systematic biopsy evidently enhanced the detection rate of high-grade prostate cancer relative to that by systematic biopsy alone (P = 0.009). Nineteen (35.2%) high-grade prostate cancer cases were missed by systematic biopsy alone, and nine (16.7%) were missed by targeted biopsy alone (P = 0.048).

In patients with prior negative biopsies, the detection rate of prostate cancer was 65.4% (17/26) while that of high-grade prostate cancer was 42.3% (11/26). Among this subgroup of prostate cancer patients, the prostate cancer detection rate by targeted biopsy (53.8%, 14/26) was higher than that by systematic biopsy (26.9%, 7/26). [Table 3] compares the diagnostic performance between targeted biopsy and systematic biopsy.
Table 3: Performance comparison of targeted biopsy and systematic biopsy using combined biopsy as standard reference

Click here to view


Detection rates of prostate cancer and high-grade prostate cancer as a function of the PI-RADS score

The detection rate achieved using targeted biopsy was 39.4% (13/33) among patients with an overall PI-RADS score of 3; of them, 81.1% (30/37) had an overall score of 4 and 69.2% (18/26) had an overall score of 5. Notably, the detection rate of targeted biopsy with a PI-RADS score of 3 was lower than that with a PI-RADS score of 4 (P < 0.01 for a PI-RADS score of 4 and P = 0.020 for a PI-RADS score of 5, respectively). However, there was no significant difference between the PI-RADS scores of 4 and 5 (P = 0.277). Similar results were observed from the per-lesion PI-RADS score [Table 4].
Table 4: Gleason score of systematic biopsies and magnetic resonance imaging targeted biopsies

Click here to view


Detection rates of prostate cancer and high-grade prostate cancer as a function of lesion size

The median size across all the 103 MRI lesions was 0.57 (IQR: 0.33–1.04) cm2, with 0.62 (IQR: 0.38–1.04) cm2 for the positive targeted biopsy cores and 0.47 cm2 (IQR: 0.29–0.92 cm2; P = 0.368) for the negative targeted biopsy cores.

Comparison of Gleason scores between systematic and targeted biopsy cores

According to systematic biopsy, 17, 6, 8, and 21 cases were identified as having respective Gleason scores of 6, 3+4, 4+3, or ≥8 [Table 4]; and in targeted biopsy, 12, 11, 11, and 22 cases were recognized as having the above-mentioned Gleason scores, respectively. Less than a half (8/17) of patients with a Gleason score of 6 based on systematic biopsy were found to have a higher Gleason score according to targeted biopsy, resulting in a higher detection rate of high-grade prostate cancer.


  Discussion Top


Cognitive software fusion biopsy has worse performance than in-bore biopsy and software co-registration fusion biopsy in terms of overall detection of prostate cancer[12],[13],[14] as well as detection of small and transitional zone lesions.[8] Nonetheless, all these three approaches are associated with similar detection rates of clinically significant prostate cancer. This finding suggests that cognitive fusion-targeted biopsy, which requires no extra equipment, is the most cost-effective approach to detect clinically significant disease. Some studies report that software co-registration performs better than the cognitive approaches for software fusion biopsy, which may reflect the strong dependence of the performance of cognitive approaches on the experience of the clinicians.[15] In this study, a 3D matrix positioning method was described to support cognitive fusion-targeted prostate biopsy, which was also validated in comparison with systematic biopsy alone.

This study showed that the novel 3D positioning method discussed herein might help to identify the location of suspected lesions, with a median size of about 0.5 cm2. The median lesion size for positive biopsy is larger than that for negative biopsy, but the difference was not statistically significant. This finding seemed to go against the intuition and clinical experience that the lesion size makes a difference, particularly when the lesion size was small. Therefore, it was predicted that there might be some confounding factors in the relationship between the detection rate of prostate cancer and the lesion size, but the exact influence of these variables could not be easily determined because of the limited sample size in this study.

In addition, our study demonstrated that a Gleason score of 6 based on systematic biopsy was not a completely reliable indicator for low-grade prostate cancer. In other words, active surveillance or other conservative treatment might still be required for these patients. These results also suggested that targeted biopsy cores might provide a more accurate diagnosis of the pathological state of prostate cancer patients, which might thereby improve the subsequent treatment. Our method was based on our reasoning that cognitive fusion-targeted biopsy demanded proficiency in anatomy, high-quality ultrasound imaging of the prostate, and good spatial thinking. Of note, our approach enabled inexperienced clinicians to obtain reliable results because the operator could identify the midline of the prostate on the axial plane and then focus the targeted area on this plane based on the x- and y-axis coordinates. This result was in better coincidence of the MRI and ultrasound images. In addition, it was discovered from our study that adding the results of our targeted biopsy approach to those of systematic biopsy could obviously increase the detection rates of both prostate cancer and high-grade prostate cancer. Our findings suggest the potential for developing standard procedures to allow clinicians to apply our method in their environments, in the absence of the specialized hardware or software required in other MRI-targeted biopsy approaches. Experienced clinicians can achieve a high detection rate of prostate cancer using traditional cognitive fusion methods; however, it is difficult for novices to construct a lesion location image based on different MRI and ultrasound images and to precisely puncture the target during the biopsy process. To overcome these weaknesses, our novel 3D positioning method sets up a common frame of reference, which serves as a bridge to connect the two different images, thus assisting clinicians in taking the target lesion “from point to point.” Our findings confirmed the superiority of this new method over systemic biopsy. Next, we compare our method with traditional cognitive-targeted biopsy in terms of the detection rate of prostate cancer and the learning curve so as to further assess its clinical value.

Several limitations of this study should be noted. First, patients were not categorized according to the number of prior biopsies, PSA level, or other clinical parameters, because we only intended to assess the effectiveness of our method for sampling suspected lesions. Second, 12-core systematic biopsies were not performed in all patients; in particular, such biopsies were not carried out in patients who had already had negative 12-core systematic biopsies, thus avoiding the risk of unnecessary injury. Third, this cognitive approach was not compared with software-assisted or conventional cognitive approaches to fusion-targeted biopsy. Therefore, further comparison studies are warranted.


  Conclusion Top


The findings of this study suggest that cognitive fusion-targeted biopsy, aided by the novel 3D matrix positioning method described in this study, can be used in combination with systematic biopsy to attain higher detection rates of prostate cancer and high-grade prostate cancer than those by systematic biopsy alone.


  Author Contributions Top


HFW and RC made substantial contributions to collect the dataset, conceive the study idea, participate in data analysis, conduct statistical analyses, and draft the manuscript. BMH and MQ was involved in drafting the manuscript and revising it critically for important intellectual content, collecting the dataset, and conceiving the study idea. YW and HZL collected the dataset and participated in data analyses. QSY is responsible for the MRI review. BMH has reviewed and polished the manuscript. YHS and XG participated in the study design and coordination. All authors read and approved the final manuscript.


  Competing Interests Top


All authors declare no competing interests.


  Acknowledgments Top


This study is supported by the Fund for National Natural Science Foundation Youth Project (No. 81702514, to RC).



 
  References Top

1.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.  Back to cited text no. 1
    
2.
Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 2014; 65: 124–37.  Back to cited text no. 2
    
3.
Serefoglu EC, Altinova S, Ugras NS, Akincioglu E, Asil E, et al. How reliable is 12-core prostate biopsy procedure in the detection of prostate cancer. Can Urol Assoc J 2013; 7: E293–8.  Back to cited text no. 3
    
4.
Bjurlin MA, Meng X, Le Nobin J, Wysock JS, Lepor H, et al. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment. J Urol 2014; 192: 648–58.  Back to cited text no. 4
    
5.
Padhani AR, Weinreb J, Rosenkrantz AB, Villeirs G, Turkbey B, et al. Prostate imaging-reporting and data system steering committee: PI-RADS v2 status update and future directions. Eur Urol 2019; 75: 385–96.  Back to cited text no. 5
    
6.
Sonn GA, Chang E, Natarajan S, Margolis DJ, Macairan M, et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 2014; 65: 809–15.  Back to cited text no. 6
    
7.
Mowatt G, Scotland G, Boachie C, Cruickshank M, Ford JA, et al. The diagnostic accuracy and cost-effectiveness of magnetic resonance spectroscopy and enhanced magnetic resonance imaging techniques in aiding the localisation of prostate abnormalities for biopsy: a systematic review and economic evaluation. Health Technol Assess 2013; 17: vii–xix, 1–281.  Back to cited text no. 7
    
8.
Monda SM, Vetter JM, Andriole GL, Fowler KJ, Shetty AS, et al. Cognitive versus software fusion for MRI-targeted biopsy: experience before and after implementation of fusion. Urology 2018; 119: 115–20.  Back to cited text no. 8
    
9.
Wu J, Ji A, Xie B, Wang X, Zhu Y, et al. Is magnetic resonance/ultrasound fusion prostate biopsy better than systematic prostate biopsy? An updated meta- and trial sequential analysis. Oncotarget 2015; 6: 43571–80.  Back to cited text no. 9
    
10.
Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, et al. ESUR prostate MR guidelines 2012. Eur Radiol 2012; 22: 746–57.  Back to cited text no. 10
    
11.
Rosenkrantz AB, Verma S, Choyke P, Eberhardt SC, Eggener SE, et al. Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol 2016; 196: 1613–8.  Back to cited text no. 11
    
12.
Wegelin O, van Melick H, Hooft L, Bosch J, Reitsma HB, et al. Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique. Eur Urol 2017; 71: 517–31.  Back to cited text no. 12
    
13.
Oberlin DT, Casalino DD, Miller FH, Matulewicz RS, Perry KT, et al. Diagnostic value of guided biopsies: fusion and cognitive-registration magnetic resonance imaging versus conventional ultrasound biopsy of the prostate. Urology 2016; 92: 75–9.  Back to cited text no. 13
    
14.
Wysock JS, Rosenkrantz AB, Huang WC, Stifelman MD, Lepor H, et al. A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol 2014; 66: 343–51.  Back to cited text no. 14
    
15.
Kwak JT, Hong CW, Pinto PA, Williams M, Xu S, et al. Is visual registration equivalent to semiautomated registration in prostate biopsy? Biomed Res Int 2015; 2015: 394742.  Back to cited text no. 15
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

 
Top
 
 
  Search
 
 Search Pubmed for
 
    -  Wang HF
    -  Chen R
    -  He BM
    -  Qu M
    -  Wang Y
    -  Lin HZ
    -  Yang QS
    -  Gao X
    -  Sun YH
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Introduction
Patients and Methods
Results
Discussion
Conclusion
Author Contributions
Competing Interests
Acknowledgments
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed236    
    PDF Downloaded16    

Recommend this journal