INVITED REVIEW
Year : 2019  |  Volume : 21  |  Issue : 3  |  Page : 215-223

Transcriptional repression by androgen receptor: roles in castration-resistant prostate cancer


1 Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
2 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
3 Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
4 Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA

Correspondence Address:
Jindan Yu
Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aja.aja_19_19

Rights and Permissions

Androgen receptor (AR), a hormonal transcription factor, plays important roles during prostate cancer progression and is a key target for therapeutic interventions. While androgen-deprivation therapies are initially successful in regressing prostate tumors, the disease ultimately comes back as castration-resistant prostate cancer (CRPC) or at the late stage as neuroendocrine prostate cancer (NEPC). CRPC remains largely dependent on hyperactive AR signaling in the milieu of low androgen, while NEPC is negative of AR expression but positive of many AR-repressed genes. Recent technological advances in genome-wide analysis of transcription factor binding sites have revealed an unprecedented set of AR target genes. In addition to its well-known function in activating gene expression, AR is increasingly known to also act as a transcriptional repressor. Here, we review the molecular mechanisms by which AR represses gene expression. We also summarize AR-repressed genes that are aberrantly upregulated in CRPC and NEPC and represent promising targets for therapeutic intervention.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed928    
    Printed123    
    Emailed0    
    PDF Downloaded201    
    Comments [Add]    
    Cited by others 1    

Recommend this journal