ORIGINAL ARTICLE
Year : 2017  |  Volume : 19  |  Issue : 5  |  Page : 591-595

MicroRNA-27a-mediated repression of cysteine-rich secretory protein 2 translation in asthenoteratozoospermic patients


1 Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
2 Laboratory Medical Center, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
3 Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
4 Cancer Research Institute, Southern Medical University, Guangzhou, China

Correspondence Address:
Dr. Cun-Dong Liu
Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China

Dr. Xin Li
Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Cancer Research Institute, Southern Medical University, Guangzhou, China

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.185001

Rights and Permissions

Cysteine-rich secretory protein 2 (CRISP2) is an important protein in spermatozoa that plays roles in modulating sperm flagellar motility, the acrosome reaction, and gamete fusion. Spermatozoa lacking CRISP2 exhibit low sperm motility and abnormal morphology. However, the molecular mechanisms underlying the reduction of CRISP2 in asthenoteratozoospermia (ATZ) remain unknown. In this study, low expression of CRISP2 protein rather than its mRNA was observed in the ejaculated spermatozoa from ATZ patients as compared with normozoospermic males. Subsequently, bioinformatic prediction, luciferase reporter assays, and microRNA-27a (miR-27a) transfection experiments revealed that miR-27a specifically targets CRISP2 by binding to its 3' untranslated region (3'-UTR), suppressing CRISP2 expression posttranscriptionally. Further evidence was provided by the clinical observation of high miR-27a expression in ejaculated spermatozoa from ATZ patients and a negative correlation between miR-27a expression and CRISP2 protein expression. Finally, a retrospective follow-up study supported that both high miR-27a expression and low CRISP2 protein expression were associated with low progressive sperm motility, abnormal morphology, and infertility. This study demonstrates a novel mechanism responsible for reduced CRISP2 expression in ATZ, which may offer a potential therapeutic target for treating male infertility, or for male contraception.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4801    
    Printed118    
    Emailed0    
    PDF Downloaded369    
    Comments [Add]    
    Cited by others 8    

Recommend this journal