ORIGINAL ARTICLE
Year : 2017  |  Volume : 19  |  Issue : 2  |  Page : 203-207

Regeneration of rat corpora cavernosa tissue by transplantation of CD133+ cells derived from human bone marrow and placement of biodegradable gel sponge sheet


1 Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
2 Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan

Correspondence Address:
Shogo Inoue
Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.179155

Rights and Permissions

The objective is to develop an easier technique for regenerating corpora cavernosa tissue through transplantation of human bone marrow-derived CD133 + cells into a rat corpora cavernosa defect model. We excised 2 mm × 2 mm squares of the right corpora cavernosa of twenty-three 8-week-old male nude rats. Alginate gel sponge sheets supplemented with 1 × 10 4 CD133 + cells were then placed over the excised area of nine rats. Functional and histological evaluations were carried out 8 weeks later. The mean intracavernous pressure/mean arterial pressure ratio for the nine rats (0.34258 ± 0.0831) was significantly higher than that for eight rats with only the excision (0.0580 ± 0.0831, P = 0.0238) and similar to that for five rats for which the penis was exposed, and there was no excision (0.37228 ± 0.1051, P = 0.8266). Immunohistochemical analysis revealed that the nine fully treated rats had venous sinus-like structures and quantitative reverse transcription polymerase chain reaction analysis of extracts from their alginate gel sponge sheets revealed that the amounts of mRNA encoding the nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were significantly higher than those for rats treated with alginate gel sheets without cell supplementation (NGF: P = 0.0309; VEGF: P < 0.0001). These findings show that transplantation of CD133 + cells accelerates functional and histological recovery in the corpora cavernosa defect model.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1071    
    Printed47    
    Emailed0    
    PDF Downloaded85    
    Comments [Add]    

Recommend this journal