ORIGINAL ARTICLE
Year : 2017  |  Volume : 19  |  Issue : 1  |  Page : 73-79

In vivo oxidative stress alters thiol redox status of peroxiredoxin 1 and 6 and impairs rat sperm quality


1 The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
2 Department of Surgery (Urology Division), McGill University, Montreal, QC H4A 3J1, Canada
3 Department of Obstetrics and Gynecology, McGill University, Montreal, QC H4A 3J1, Canada
4 Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada

Correspondence Address:
Dr. Cristian O'Flaherty
The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Surgery (Urology Division), McGill University, Montreal, QC H4A 3J1, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, QC H4A 3J1, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.170863

Rights and Permissions

Oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and antioxidant activity is a major culprit of male infertility. Peroxiredoxins (PRDXs) are major antioxidant enzymes of mammalian spermatozoa and are thiol oxidized and inactivated by ROS in a dose-dependent manner. Their deficiency and/or inactivation have been associated with men infertility. The aim of this study was to elucidate the impact of oxidative stress, generated by the in vivo tert-butyl hydroperoxide (tert-BHP) treatment on rat epididymal spermatozoa during their maturation process. Adult Sprague-Dawley males were treated with 300 μmoles tert-BHP/kg or saline (control) per day intraperitoneal for 15 days. Lipid peroxidation (2-thibarbituric acid reactive substances assay), total amount and thiol oxidation of PRDXs along with the total amount of superoxide dismutase (SOD), motility and DNA oxidation (8-hydroxy-deoxyguanosine) were determined in epididymal spermatozoa. Total amount of PRDXs and catalase and thiol oxidation of PRDXs were determined in caput and cauda epididymis. While animals were not affected by treatment, their epididymal spermatozoa have decreased motility, increased levels of DNA oxidation and lipid peroxidation along with increased PRDXs (and not SOD) amounts. Moreover, sperm PRDXs were highly thiol oxidized. There was a differential regulation in the expression of PRDX1 and PRDX6 in the epididymis that suggests a segment-specific role for PRDXs. In conclusion, PRDXs are increased in epididymal spermatozoa in an attempt to fight against the oxidative stress generated by tert-BHP in the epididymis. These findings highlight the role of PRDXs in the protection of sperm function and DNA integrity during epididymal maturation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2175    
    Printed149    
    Emailed0    
    PDF Downloaded299    
    Comments [Add]    
    Cited by others 1    

Recommend this journal