ORIGINAL ARTICLE
Year : 2016  |  Volume : 18  |  Issue : 4  |  Page : 620-626

Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro


1 Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168; School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3088; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010; St Vincent's Clinical School, UNSW, Sydney, New South Wales 2052, Australia
2 Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia
3 Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010; St Vincent's Clinical School, UNSW, Sydney, New South Wales 2052, Australia
4 School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3088, Australia

Correspondence Address:
Peter G Stanton
Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168
Australia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.163189

Rights and Permissions

The Sertoli cell tight junction (TJ) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P < 0.01), 51% (P < 0.01), and 62% (P < 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P < 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P < 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2645    
    Printed110    
    Emailed0    
    PDF Downloaded369    
    Comments [Add]    
    Cited by others 8    

Recommend this journal