INVITED RESEARCH HIGHLIGHT
Year : 2015  |  Volume : 17  |  Issue : 4  |  Page : 610-615

A model for the control of DNA integrity by the sperm nuclear matrix


1 Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, USA
2 Cell Biology Unit, Cell Biology, Phisiology and Immunology Department, Medicine Faculty, Universitat Autonoma de Barcelona; Center of Male Infertility and Analysis, de Barcelona, Edifici Eureka, PBM5, Parc de Recerca de la UAB, Campus de la UAB, 08193 Bellaterra, Spain
3 Center of Male Infertility and Analysis, de Barcelona, Edifici Eureka, PBM5, Parc de Recerca de la UAB, Campus de la UAB, 08193 Bellaterra, Spain
4 Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology; Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Correspondence Address:
W Steven Ward
Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology; Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.153853

Rights and Permissions

The highly condensed chromatin of mammalian spermatozoa is usually considered to be biologically inert before fertilization. However, we have demonstrated that even in this compacted state, sperm chromatin is subject to degradation at open configurations associated with the nuclear matrix through a process we have termed sperm chromatin fragmentation (SCF). This suggests that a mechanism exists to monitor the health of spermatozoa during transit through the male reproductive tract and to destroy the genome of defective sperm cells. The site of DNA damage in SCF, the matrix attachment sites, are the same that we hypothesize initiate DNA synthesis in the zygote. When sperm that have damaged DNA are injected into the oocyte, the newly created zygote responds by delaying DNA synthesis in the male pronucleus and, if the damage is severe enough, arresting the embryo's development. Here we present a model for paternal DNA regulation by the nuclear matrix that begins during sperm maturation and continues through early embryonic development.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1596    
    Printed34    
    Emailed0    
    PDF Downloaded284    
    Comments [Add]    
    Cited by others 5    

Recommend this journal