Table of Contents  
ORIGINAL ARTICLE
Year : 2015  |  Volume : 17  |  Issue : 2  |  Page : 245-247

Validation of robot-assisted vasectomy reversal


Department of Reproductive Urology, Austin Fertility and Reproductive Medicine, Austin, Texas 78745, USA

Date of Submission15-Jul-2014
Date of Decision21-Aug-2014
Date of Acceptance22-Sep-2014
Date of Web Publication25-Nov-2014

Correspondence Address:
Parviz K Kavoussi
Department of Reproductive Urology, Austin Fertility and Reproductive Medicine, Austin, Texas 78745
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.142141

Rights and Permissions
  Abstract 

Vasectomy reversal (VR) has traditionally been performed with the operative microscope. Recently, robot assistance has been applied to VR. Retrospective chart review from a single VR center included men who underwent either robot-assisted VR (RAVR) or microsurgical VR (MVR) by a single fellowship trained microsurgeon between 2011 and 2013 and had a 6 weeks postoperative semen analysis. Fifty-two men who were interested in VR were counseled and given the option of RAVR versus MVR. Twenty-seven men elected to have MVR while 25 men elected RAVR. These included vasovasostomies and vasoepididymostomies in both groups, as well as redo VRs in men who had failed previous VR attempts by other surgeons. There was no statistically significant difference between the microsurgical group and the robot-assisted group, respectively, in overall patency rates (89% vs 92%), 6 weeks post-VR mean sperm concentrations (28 million ml−1 vs 26 million ml−1 ) or total motile counts (29 million vs 30 million), or mean operative times (141 min vs 150 min). There was a statistically significant difference in anastomosis time (64 min vs 74 min), however, clinically this only represented a 10 min longer anastomosis time in the early robotic experience, which was found to be decreasing as the case series continued. Transitioning from MVR to RAVR is feasible with comparable outcomes.

Keywords: patency; robot-assisted; vasectomy reversal; vasoepididymostomy; vasovasostomy


How to cite this article:
Kavoussi PK. Validation of robot-assisted vasectomy reversal. Asian J Androl 2015;17:245-7

How to cite this URL:
Kavoussi PK. Validation of robot-assisted vasectomy reversal. Asian J Androl [serial online] 2015 [cited 2019 Jun 25];17:245-7. Available from: http://www.ajandrology.com/text.asp?2015/17/2/245/142141 - DOI: 10.4103/1008-682X.142141


  Introduction Top


Approximately, 500 000 men undergo vasectomy for contraception every year in the United States. Approximately, 6% of these men will ultimately seek vasectomy reversal (VR) during their lifetime. [1],[2] Patency rates have been associated with time since vasectomy, intraoperative assessment of vasal fluid quality, as well as the presence of sperm in vasal fluid intraoperatively, surgical technique, and the training and experience of the surgeon. [3],[4],[5],[6],[7] Since the advent of the operative microscope and its use for VR in the 1970s, there have been some changes in the instrumentation used for this procedure, but little in the way of alternative magnification sources or truly different technology. [8] Relatively recently, the robotic platform was applied to VR in humans and may offer some potential advantages. [9],[10],[11],[12],[13]


  Materials and Methods Top


Vasectomy reversal was performed for 52 consecutive men by one fellowship trained microsurgeon between 2011 and 2013. Of these men, 27 elected to have microsurgical VR (MVR) while 25 elected robot-assisted VR (RAVR). Each patient was counseled on both surgical techniques and selected the technique of choice for them. This may have also been based on cost for some patients, as the robot-assisted technique costs a total of 315 dollars more than the microsurgical technique due to the hospital fee being higher than the surgery center fee. The cases in the study included vasovasostomies and vasoepididymostomies in both groups, as well as men who were having repeated attempts at reconstruction after failing VR with another surgeon. Both MVRs and RAVRs were set up for the anastomosis in the same manner. The scrotal incision for all vasovasostomies was 1 cm in length longitudinally, and bilateral vasectomy defects were isolated and delivered through this single incision. For vasoepididymostomies, the testicles were delivered through a median raphe incision. For vasovasostomies, the abdominal and testicular ends of the vas deferens were sharply divided above and below the vasectomy defect, the fluid from the testicular end was examined under the light microscope, and saline was injected through the abdominal end to demonstrate patency. The microspike vas clamp was utilized to approximate the ends, and the anastomosis was performed with either the da Vinci SI robotic system or the operative microscope. Vasoepididymostomies were performed in five men in the microsurgical group and two men in the robot-assisted group, and the remainder underwent vasovasostomies. Vasovasostomies were performed in the straight, as well as the convoluted vas deferens depending on intraoperative findings. Regardless of whether the VR was performed by microsurgical or robot-assisted technique, a modified one-layer anastomosis was performed with interrupted 9-0 nylon sutures. Vasoepididymostomies were performed using the two suture intussuscepted technique with 10-0 nylon suture. [14]

A retrospective chart review was performed after obtaining Institutional Review Board approval from the Austin Multi-Institutional Review Board. The outcomes measured included overall patency rates between the two groups as well as patency rates subdivided in intervals from the time since vasectomy. The three intervals assessed included 0-8 years postvasectomy, 9-15 years postvasectomy, as well > 15 years since vasectomy. Patency was defined as the presence of sperm in the semen at 6 weeks post-VR. The other outcomes measured included mean sperm concentration and total motile count at the 6 weeks post-VR semen analysis, operative time, and anastomosis time.


  Results Top


After counseling, 27 men underwent MVR while 25 underwent RAVR ([Figure 1] and [Figure 2]). In men who were 0-8 years from the time of vasectomy, there was no statistically significant difference in patency rates at 6 weeks post-VR, however, the robotic group demonstrated a 100% patency rate, whereas the microsurgical group had an 89% patency rate. There was no statistically significant difference in patency rates in men who were 9-15 years from the time of vasectomy, in the > 15 years postvasectomy group, or in overall patency rates regardless of obstructive interval ([Table 1]). All vasoepididymostomies were patent in both groups.
Figure 1: Vasovasostomy being performed with the robotic system, demonstrating anastomosing the ends of the vas deferens with interrupted 9-0 nylon suture with a modified one-layer technique.

Click here to view
Figure 2: The appearance of the robot-assisted vasovasostomy anastomosis while maintaining the vasal adventitia for microvascular preservation.

Click here to view
Table 1: Patency rates based on the number of years from vasectomy to vasectomy reversal


Click here to view


There was no difference between the microsurgical and robot-assisted groups in mean sperm concentration or total motile count on semen analysis 6 weeks post-VR ([Table 2]). There were no men in either group who demonstrated the sperm in the semen with no motility, indicative of stricture. Preliminary pregnancy data were reviewed, although a great deal of this data is still pending in many cases and a number have been lost to follow-up, for reasons such as many patients travel from surrounding regions for VR and find follow-up difficult due to distance. As these data include cases from the beginning of this private practice, the number of cases done early in the series are far outnumbered by the more recent ones with growth of the practice, therefore, a great deal of pregnancy data is still pending. Preliminary pregnancy data reveal 6 pregnancies in the MVR group and 7 pregnancies in the RAVR group thus far. The mean time to pregnancy in the MVR group was 9 months, and 2 of these pregnancies were following microsurgical vasoepididymostomies. The mean time to pregnancy in the RAVR group was 5 months, and these were all following robot-assisted vasovasostomies. The mean operative time for the MVR group was 141 min (n = 27) compared to 150 min (n = 25) in the RAVR group. There was not a statistically significant difference in mean operative times between the two groups (P = 0.3). Evaluation of the mean anastomosis times between the two groups was performed as this was the step of the operation that the robot was used for compared to the microscope. The mean anastomosis time for the MVR group was 64 min (n = 27) versus 74 min (n = 25) for the RAVR group. There was a statistically significant difference in the mean anastomosis times between the two groups (P = 0.009), with a 10 min longer mean anastomosis time with the robot-assisted group. A subgroup analysis of vasoepididymostomy patients reveals a mean anastomosis time of 74 min in the MVR group compared to a mean anastomosis time of 72 min in the RAVR group.
Table 2: Mean sperm concentration and total motile count at 6 weeks postvasectomy reversal


Click here to view



  Discussion Top


For nearly a decade, the idea of applying the da Vinci® robotic system for VR has been explored. In 2004, ex-vivo vasal anastomoses were performed with the robot with the findings of tremor elimination and comparable patency rates. [15] In 2005, improved stability and motion reduction during suturing was demonstrated while performing robot-assisted vasovasostomy and robot-assisted vasoepididymostomy in a rat model. [16] A two-layer anastomosis was performed using robot assistance in an in vivo rabbit model in 2005. [17] Ultimately, RAVR was applied to human surgery by Dr. Parekattil in 2010, with data suggesting shorter operative times and higher mean sperm counts in men undergoing RAVR. [9],[18]

This current study demonstrates no statistically significant difference in patency rates between the two surgical techniques. However, in men who were in the 0-8 years obstructed interval, the robot-assisted technique had a 100% patency rate while the microsurgical technique had an 89% patency rate, which could arguably be a clinically significant difference. In contrast to previous human data, this data does not demonstrate a difference between sperm concentrations or total motile counts based on surgical instrumentation. Mean operative times were similar. As every patient's anatomy is different and there may be challenges in the setup of the vasal ends, or the vasal end to the epididymal tubule, for anastomosis depending on the vasectomist's technique or the tissue response, we thought it important to compare the actual anastomosis times between the two groups. The anastomosis is the only portion of the operation during which the robotic system is docked and used. Therefore, this was thought to be an important outcome to compare while eliminating variables of the time it may take to set up the vasal ends to prepare for the anastomosis with either technique. Although the mean robotic anastomosis time is statistically longer than the microsurgical anastomosis time, it is clinically a 10 min difference, which has debatable clinical significance. It should also be considered that there is a learning curve involved with robotic microsurgery, and this data is inclusive from the first RAVR performed by this surgeon with progression through the period reported. This surgeon is also fellowship trained in the traditional microsurgery. There has been shortening of operative and anastomotic robotic time with case volume and the practical difference between the two groups appears small. The question has arisen as to whether a surgeon formally trained in robotic surgery might have superior outcomes to one trained in microsurgery for RAVR. The author would argue that a surgeon trained in both disciplines is best suited for this operation, but as the data reveal, the transition from MVR to RAVR can be relatively seamless. In fact, the argument can be made that the principles of microsurgery are being applied to robot-assisted microsurgery and what is learned of tissue handling microsurgically is easily translated to robotic microsurgery. An understanding of the management of such patients and following semen parameters, and understanding when further intervention or assistance may be needed to assist the couple in conceiving is paramount for any surgeon caring for these patients. Therefore, training in the care for subfertile men is of great importance to provide this service.

The operative robot brings a new dynamic to microsurgery. It offers a number of potential advantages. These include elimination of tremor, improved stability, surgeon ergonomics/decreased surgeon fatigue, scalability of motion, three-dimensional high-definition visualization, the ability for the surgeon to manipulate three surgical instruments and the camera simultaneously, not requiring a specialty skilled microsurgical assistant, and the potential of improving operative times. The operative times have been reported as being shorter in a previous publication, and with experience, the surgeon from this study sees a similar trend. [9] An additional advantage of the robotic platform is that during a difficult microsurgical case, if the surgeon backs away from the microscope for a moment and then re-engages, the surgical field has almost always invariably moved or changed. This is not the case with the robotic system, which allows for the surgeon to back out of the console, re-engage, and nothing in the field has changed.

Limitations to this study include the sample size, especially in men who are 15 years or greater from the time of vasectomy. Ultimately, prospective, randomized, control trials would give better data to elucidate the use of RAVR in comparison to traditional MVR.


  Conclusion Top


Robot-assisted vasectomy reversal is an effective option with comparable outcomes.


  Competing Interests Top


The author declares no competing interests.


  Acknowledgments Top


St. David's South Austin Medical Center robotic surgery team: Charlie Harlan, C.S.T., Tara Buck, R.N., B.S.N., C.N.O.R., and Thomas Butz, R.N. who were integral in the establishment and surgical assistance of the robotic vasectomy reversal program.

 
  References Top

1.
Sheynkin YR, Ye Z, Menendez S, Liotta D, Veeck LL, et al. Controlled comparison of percutaneous and microsurgical sperm retrieval in men with obstructive azoospermia. Hum Reprod 1998; 13: 3086-9.  Back to cited text no. 1
    
2.
Sandlow JI, Nagler HM. Vasectomy and vasectomy reversal: important issues. Preface. Urol Clin North Am 2009; 36: xiii-xiv.  Back to cited text no. 2
    
3.
Belker AM, Thomas AJ Jr, Fuchs EF, Konnak JW, Sharlip ID. Results of 1,469 microsurgical vasectomy reversals by the Vasovasostomy Study Group. J Urol 1991; 145: 505-11.  Back to cited text no. 3
    
4.
Kolettis PN, Sabanegh ES, Nalesnik JG, D'Amico AM, Box LC, et al. Pregnancy outcomes after vasectomy reversal for female partners 35 years old or older. J Urol 2003; 169: 2250-2.  Back to cited text no. 4
    
5.
Lipshultz LI. Vasectomy reversal-predicting outcomes. J Urol 2004; 171: 310.  Back to cited text no. 5
[PUBMED]    
6.
Brannigan RE. Vasectomy reversal: indications and outcomes. J Urol 2012; 187: 385-6.  Back to cited text no. 6
[PUBMED]    
7.
Hsiao W, Goldstein M, Rosoff JS, Piccorelli A, Kattan MW, et al. Nomograms to predict patency after microsurgical vasectomy reversal. J Urol 2012; 187: 607-12.  Back to cited text no. 7
    
8.
Kim HH, Goldstein M. History of vasectomy reversal. Urol Clin North Am 2009; 36: 359-73.  Back to cited text no. 8
    
9.
Parekattil SJ, Atalah HN, Cohen MS. Video technique for human robot-assisted microsurgical vasovasostomy. J Endourol 2010; 24: 511-4.  Back to cited text no. 9
    
10.
Boccard GD. Robotic vasectomy reversal. Geneva Foundation for Medical Research; 2006.  Back to cited text no. 10
    
11.
De Nayer PV, Schatteman P, Fonteyne E, Mottrie A. Robotic assistance in urological microsurgery: initial report of successful in-vivo robot-assisted vasovasostomy. J Robot Surg 2007; 1: 161-2.  Back to cited text no. 11
    
12.
De Boccard G. Robotic two plane microsurgical vasectomy reversal with 11/0 and 10/1 sutures. Econ Robot Surg Newsl 2009; 7.  Back to cited text no. 12
    
13.
De Boccard G, Mottrie A. Robotic surgery in male infertility. In: Hemal AK, Menon M, editors. Robotics in Genitourinary Surgery. London: Springer-Verlag; 2011. p. 617-23.  Back to cited text no. 13
    
14.
Berger RE. Triangulation end-to-side vasoepididymostomy. J Urol 1998; 159: 1951-3.  Back to cited text no. 14
    
15.
Kuang W, Shin PR, Matin S, Thomas AJ Jr. Initial evaluation of robotic technology for microsurgical vasovasostomy. J Urol 2004; 171: 300-3.  Back to cited text no. 15
    
16.
Schiff J, Li PS, Goldstein M. Robotic microsurgical vasovasostomy and vasoepididymostomy in rats. Int J Med Robot 2005; 1: 122-6.  Back to cited text no. 16
    
17.
Kuang W, Shin PR, Oder M, Thomas AJ Jr. Robotic-assisted vasovasostomy: a two-layer technique in an animal model. Urology 2005; 65: 811-4.  Back to cited text no. 17
    
18.
Parekattil SJ, Gudeloglu A, Brahmbhatt J, Wharton J, Priola KB. Robotic assisted versus pure microsurgical vasectomy reversal: technique and prospective database control trial. J Reconstr Microsurg 2012; 28: 435-44.  Back to cited text no. 18
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Microsurgical vasectomy reversal: contemporary techniques, intraoperative decision making, and surgical training for the next generation
Russell P. Hayden,Philip S. Li,Marc Goldstein
Fertility and Sterility. 2019; 111(3): 444
[Pubmed] | [DOI]
2 Vasovasostomy and vasoepididymostomy: Review of the procedures, outcomes, and predictors of patency and pregnancy over the last decade
Takeshi Namekawa,Takashi Imamoto,Mayuko Kato,Akira Komiya,Tomohiko Ichikawa
Reproductive Medicine and Biology. 2018;
[Pubmed] | [DOI]
3 Pros and cons of robotic microsurgery as an appropriate approach to male reproductive surgery for vasectomy reversal and varicocele repair
Peter Chan,Sijo J. Parekattil,Marc Goldstein,Larry I. Lipshultz,Parviz Kavoussi,Andrew McCullough,Mark Sigman
Fertility and Sterility. 2018; 110(5): 816
[Pubmed] | [DOI]
4 Robot-assisted microsurgical vasovasostomy: the learning curve for a pure microsurgeon
Parviz K. Kavoussi,Charlie Harlan,Keikhosrow M. Kavoussi,Shahryar K. Kavoussi
Journal of Robotic Surgery. 2018;
[Pubmed] | [DOI]
5 Review of the role of robotic surgery in male infertility
Mohamed Etafy,Ahmet Gudeloglu,Jamin V. Brahmbhatt,Sijo J. Parekattil
Arab Journal of Urology. 2017;
[Pubmed] | [DOI]
6 Vasectomy reversal: A review of the evaluation, techniques, and outcomes
Parviz K Kavoussi
World Journal of Clinical Urology. 2015; 4(1): 48
[Pubmed] | [DOI]
7 Commentary on "validation of robot-assisted vasectomy reversal"
WayneJG Hellstrom,Premsant Sangkum,FaysalA Yafi
Asian Journal of Andrology. 2015; 17(2): 332
[Pubmed] | [DOI]
8 Commentary on "validation of robot-assisted vasectomy reversal" by Dr. Parviz K Kavoussi
SijoJ Parekattil
Asian Journal of Andrology. 2015; 17(2): 333
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
Competing Interests
Acknowledgments
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1716    
    Printed34    
    Emailed0    
    PDF Downloaded290    
    Comments [Add]    
    Cited by others 8    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]