ORIGINAL ARTICLE
Year : 2014  |  Volume : 16  |  Issue : 6  |  Page : 897-901

Risk prediction models for biochemical recurrence after radical prostatectomy using prostate-specific antigen and Gleason score


1 Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
2 Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
3 Department of Urology, Charité - Universitätsmedizin Berlin; Berlin Institute for Urologic Research, Berlin, Germany
4 Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Urology, Changzhou No. 2 People's Hospital, Changzhou, China
5 Stanford University School of Medicine, Stanford, CA, USA

Correspondence Address:
Jonas Busch
Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1008-682X.129940

Rights and Permissions

Many computer models for predicting the risk of prostate cancer have been developed including for prediction of biochemical recurrence (BCR). However, models for individual BCR free probability at individual time-points after a BCR free period are rare. Follow-up data from 1656 patients who underwent laparoscopic radical prostatectomy (LRP) were used to develop an artificial neural network (ANN) to predict BCR and to compare it with a logistic regression (LR) model using clinical and pathologic parameters, prostate-specific antigen (PSA), margin status (R0/1), pathological stage (pT), and Gleason Score (GS). For individual BCR prediction at any given time after operation, additional ANN, and LR models were calculated every 6 months for up to 7.5 years of follow-up. The areas under the receiver operating characteristic (ROC) curve (AUC) for the ANN (0.754) and LR models (0.755) calculated immediately following LRP, were larger than that for GS (AUC: 0.715; P = 0.0015 and 0.001), pT or PSA (AUC: 0.619; P always <0.0001) alone. The GS predicted the BCR better than PSA (P = 0.0001), but there was no difference between the ANN and LR models (P = 0.39). Our ANN and LR models predicted individual BCR risk from radical prostatectomy for up to 10 years postoperative. ANN and LR models equally and significantly improved the prediction of BCR compared with PSA and GS alone. When the GS and ANN output values are combined, a more accurate BCR prediction is possible, especially in high-risk patients with GS ≥7.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1678    
    Printed29    
    Emailed1    
    PDF Downloaded260    
    Comments [Add]    
    Cited by others 2    

Recommend this journal